![](/files/happy5.png)
Distribution and upper bound of mimic numbers
Problem
Let the notation denote ''
divides
''. The mimic function in number theory is defined as follows [1].
Definition For any positive integer
divisible by
, the mimic function,
, is given by,
![$ \mathcal{N} = \sum_{i=0}^{n}\mathcal{X}_{i}\mathcal{M}^{i} $](/files/tex/b522b53f963c91b601b32275aea4d249b2dd8264.png)
![$ \mathcal{D} $](/files/tex/c671ad4c8feaa23e9e853771cb321d1c25623365.png)
![$ f(\mathcal{D} | \mathcal{N}) $](/files/tex/ec9b08e3025c8c48821c63cc16cb7f5233335280.png)
By using this definition of mimic function, the mimic number of any non-prime integer is defined as follows [1].
Definition The number
is defined to be the mimic number of any positive integer
, with respect to
, for the minimum value of which
.
![$ m $](/files/tex/ddaab6dc091926fb1da549195000491cefae85c1.png)
![$ \mathcal{N} = \sum_{i=0}^{n}\mathcal{X}_{i}\mathcal{M}^{i} $](/files/tex/b522b53f963c91b601b32275aea4d249b2dd8264.png)
![$ \mathcal{D} $](/files/tex/c671ad4c8feaa23e9e853771cb321d1c25623365.png)
![$ f^{m}(\mathcal{D} | \mathcal{N}) = \mathcal{D} $](/files/tex/972f697a9ebf623423c169767761bfeef6d476e7.png)
Given these two definitions and a positive integer , find the distribution of mimic numbers of those numbers divisible by
.
Again, find whether there is an upper bound of mimic numbers for a set of numbers divisible by any fixed positive integer .
Bibliography
*[1] Malay Bhattacharyya, Sanghamitra Bandyopadhyay and U Maulik, Non-primes are recursively divisible, Acta Universitatis Apulensis 19 (2009).
* indicates original appearance(s) of problem.