![](/files/happy5.png)
![$ n\geq 6 $](/files/tex/5b3132d49e9fdff046189036c1228b4ad60b9f64.png)
![$ \gamma_t(Q_n) = 2^{n-2} $](/files/tex/5983622a21cf9a1f3682fd1ddf6aa5e817779c43.png)
Here denotes the
-dimensional hypercube, i.e. the graph with vertex set
and two vertices adjacent if they differ in exactly one coordinate. A total dominating set of a graph
is a set
of vertices of
such that every vertex has at least one neighbor in
". The total domination number
of
is the cardinality of a minimum total dominating set. A total dominator coloring of a graph
, briefly TDC, is a proper coloring of
in which each vertex of the graph is adjacent to every vertex of some color class. The total dominator chromatic number
of
is the minimum number of color classes in a TDC in
(see [Kaz1]).
The following theorems are proved in [Kaz2].
![$ n\geq 6 $](/files/tex/5b3132d49e9fdff046189036c1228b4ad60b9f64.png)
![$ \gamma_t(Q_n)\leq2^{n-2} $](/files/tex/9109031a4b9fb2d2dc30367c985a48a68838fb2a.png)
![$ n=1,2 $](/files/tex/3b0da1dfbafd9ebd09fd36ddfbe58c21a28bda7a.png)
![$ \gamma_t(Q_n)=2^n $](/files/tex/3d70a99152f929f279610b50402ea58cf98afe77.png)
2. If
![$ n=3 $](/files/tex/5c31e34beeb5b02bb040e0d2082ec12a990e94d0.png)
![$ \gamma_t(Q_n)=2^{n-1} $](/files/tex/b2e7767786f2fd95e02730e6ec1238add5ced0d6.png)
3. If
![$ n=4,5 $](/files/tex/a137969bafc473cce45b44abc81cfdbe65d4e65b.png)
![$ \gamma_t(Q_n)=2^{n-2} $](/files/tex/0358397476c7b8154f2dc0c0939baf10784fc3cd.png)
![$ n\geq 1 $](/files/tex/83470a8cab6af21c5423b6e130490bcd93cd91b5.png)
![$ \chi_d^t(Q_n)-2 \leq \gamma_t(Q_n) \leq \chi_d^t(Q_n) $](/files/tex/9a572beeecd447b001b7fa6c4a78ba61bf4a931f.png)
Bibliography
[Kaz1] Adel P. Kazemi, Total dominator chromatic number of a graph, http://arxiv.org/abs/1307.7486.
[Kaz2] Adel P. Kazemi, Total Dominator Coloring in Product Graphs, Utilitas Mathematica (2013), Accepted.
* indicates original appearance(s) of problem.