![](/files/happy5.png)
Conjecture Suppose
with
is a connected cubic graph admitting a
-edge coloring. Then there is an edge
such that the cubic graph homeomorphic to
has a
-edge coloring.
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ |V(G)|>2 $](/files/tex/ac99a71a6e28acc3052e542089238e810d347be6.png)
![$ 3 $](/files/tex/4aaf85facb6534fd470edd32dbdb4e28f6218190.png)
![$ e \in E(G) $](/files/tex/730c5d64c8d749c640adc18eb493c641ff1addc9.png)
![$ G-e $](/files/tex/a9c40841d6043b14ca9501d156e86164ad3f81e5.png)
![$ 3 $](/files/tex/4aaf85facb6534fd470edd32dbdb4e28f6218190.png)
Reformulation via 4-flows:
Conjecture Suppose
is a cubic graph with a nowhere-zero
-flow, then there is an edge
such that
has a nowhere-zero
-flow.
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ 4 $](/files/tex/1f1498726bb4b7754ca36de46c0ccdd09136d115.png)
![$ e \in E(G) $](/files/tex/730c5d64c8d749c640adc18eb493c641ff1addc9.png)
![$ G-e $](/files/tex/a9c40841d6043b14ca9501d156e86164ad3f81e5.png)
![$ 4 $](/files/tex/1f1498726bb4b7754ca36de46c0ccdd09136d115.png)
Bibliography
* indicates original appearance(s) of problem.