Are there infinite number of Mersenne Primes? ★★★★

Author(s):

Conjecture   A Mersenne prime is a Mersenne number \[ M_n  = 2^p  - 1 \] that is prime.

Are there infinite number of Mersenne Primes?

Keywords: Mersenne number; Mersenne prime

Are all Mersenne Numbers with prime exponent square-free? ★★★

Author(s):

Conjecture   Are all Mersenne Numbers with prime exponent $ {2^p-1} $ Square free?

Keywords: Mersenne number

What are hyperfuncoids isomorphic to? ★★

Author(s): Porton

Let $ \mathfrak{A} $ be an indexed family of sets.

Products are $ \prod A $ for $ A \in \prod \mathfrak{A} $.

Hyperfuncoids are filters $ \mathfrak{F} \Gamma $ on the lattice $ \Gamma $ of all finite unions of products.

Problem   Is $ \bigcap^{\mathsf{\tmop{FCD}}} $ a bijection from hyperfuncoids $ \mathfrak{F} \Gamma $ to:
    \item prestaroids on $ \mathfrak{A} $; \item staroids on $ \mathfrak{A} $; \item completary staroids on $ \mathfrak{A} $?

If yes, is $ \operatorname{up}^{\Gamma} $ defining the inverse bijection? If not, characterize the image of the function $ \bigcap^{\mathsf{\tmop{FCD}}} $ defined on $ \mathfrak{F} \Gamma $.

Consider also the variant of this problem with the set $ \Gamma $ replaced with the set $ \Gamma^{\ast} $ of complements of elements of the set $ \Gamma $.

Keywords: hyperfuncoids; multidimensional

Domain and image for Gamma-reloid ★★

Author(s): Porton

Conjecture   $ \ensuremath{\operatorname{dom}}( \mathsf{\ensuremath{\operatorname{RLD}}})_{\ensuremath{\operatorname{\Gamma}}} f =\ensuremath{\operatorname{dom}}f $ and $ \ensuremath{\operatorname{im}}( \mathsf{\ensuremath{\operatorname{RLD}}})_{\ensuremath{\operatorname{\Gamma}}} f =\ensuremath{\operatorname{im}}f $ for every funcoid $ f $.

Keywords: