![](/files/happy5.png)
![$ \varepsilon > 0 $](/files/tex/5100aa83a735c347ff2a904d4fc00eb99293313b.png)
![$ \delta > 0 $](/files/tex/7f1f08ff9938cb9a6981c1f1e563b40b7c34396a.png)
![$ n $](/files/tex/ec63d7020a64c039d5f6703b8fa3ab7393358b5b.png)
![$ n $](/files/tex/ec63d7020a64c039d5f6703b8fa3ab7393358b5b.png)
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ H $](/files/tex/76c7b422c8e228780f70a4f31614cfcf3f831c65.png)
![$ G \equiv_{\delta n}^{\mathrm{C}} H $](/files/tex/bde71bc721de861f937e9c0d2e1c9c1d1ee7a71b.png)
![$ \mathrm{vc}(G) \ge (2 - \varepsilon) \cdot \mathrm{vc}(H) $](/files/tex/1e471324d6f347bdb5fb4e462749473752a10170.png)
Here denotes indistinguishability in
-variable first-order logic with counting quantifiers, and
denotes the cardinality of the minimum vertex-cover of
. By~[1],
implies
. Also by~[1] a positive answer would imply that an integrality gap of
resists
levels of Sherali-Adams linear programming relaxations of vertex-cover, on
-vertex graphs. It is known that such a gap resists
levels~[2]. What we ask would let us replace
by
. If improving over
were not possible, then we could approximate vertex-cover by a factor better than~
in subexponential time (i.e.
). Approximating vertex-cover by a factor better than~1.36 is NP-hard~[3], and approximating vertex-cover by factor better than~2 is UG-hard~[4], where UG stands for Unique Games (from the Unique Games Conjecture); but note that UG-hardness does not rule out subexponential-time algorithms because UG itself is solvable in subexponential time~[5]
Bibliography
[1] A. Atserias and E. Maneva. Sherali-Adams Relaxations and Indistinguishability in Counting Logics, in Proc. 3rd ACM ITCS, pp. 367-379, 2012.
[2] M. Charikar, K. Makarychev and Y. Makarychev. Integrality Gaps for Sherali-Adams Relaxations, in Proc. 41st ACM STOC, pp. 283-292, 2009.
[3] I. Dinur and S. Safra. On the Hardness of Approximating Minimum Vertex-Cover, Annals of Mathematics, 162(1):439-485, 2005.
[4] S. Khot and O. Regev. Vertex cover might be hard to approximate to within 2-epsilon, J. Comput. Syst. Sci. 74(3):335-349, 2008.
[5] S. Arora, B. Barak, and D. Steurer. Subexponential Algorithms for Unique Games and Related problems, in Proc. 51th IEEE FOCS, pp. 563-572, 2010.}
* indicates original appearance(s) of problem.