Recent Activity

Turán Problem for $10$-Cycles in the Hypercube ★★

Author(s): Erdos

Problem   Bound the extremal number of in the hypercube.

Keywords: cycles; extremal combinatorics; hypercube

Extremal $4$-Neighbour Bootstrap Percolation in the Hypercube ★★

Author(s): Morrison; Noel

Problem   Determine the smallest percolating set for the -neighbour bootstrap process in the hypercube.

Saturation in the Hypercube ★★

Author(s): Morrison; Noel; Scott

Question   What is the saturation number of cycles of length in the -dimensional hypercube?

Keywords: cycles; hypercube; minimum saturation; saturation

Cycles in Graphs of Large Chromatic Number ★★

Author(s): Brewster; McGuinness; Moore; Noel

Conjecture   If , then contains at least cycles of length .

Keywords: chromatic number; cycles

The Double Cap Conjecture ★★

Author(s): Kalai

Conjecture   The largest measure of a Lebesgue measurable subset of the unit sphere of containing no pair of orthogonal vectors is attained by two open caps of geodesic radius around the north and south poles.

Circular flow numbers of $r$-graphs ★★

Author(s): Steffen

A nowhere-zero -flow on is an orientation of together with a function from the edge set of into the real numbers such that , for all , and .

A -regular graph is a -graph if for every with odd.

Conjecture   Let be an integer. If is a -graph, then .

Keywords: flow conjectures; nowhere-zero flows

Circular flow number of regular class 1 graphs ★★

Author(s): Steffen

A nowhere-zero -flow on is an orientation of together with a function from the edge set of into the real numbers such that , for all , and . The circular flow number of is inf has a nowhere-zero -flow , and it is denoted by .

A graph with maximum vertex degree is a class 1 graph if its edge chromatic number is .

Conjecture   Let be an integer and a -regular graph. If is a class 1 graph, then .

Chromatic number of associahedron ★★

Author(s): Fabila-Monroy; Flores-Penaloza; Huemer; Hurtado; Urrutia; Wood

Conjecture   Associahedra have unbounded chromatic number.

Are there infinite number of Mersenne Primes? ★★★★

Author(s):

Conjecture   A Mersenne prime is a Mersenne number that is prime.

Are there infinite number of Mersenne Primes?

Keywords: Mersenne number; Mersenne prime

Are all Mersenne Numbers with prime exponent square-free? ★★★

Author(s):

Conjecture   Are all Mersenne Numbers with prime exponent Square free?

Keywords: Mersenne number

What are hyperfuncoids isomorphic to? ★★

Author(s): Porton

Let be an indexed family of sets.

Products are for .

Hyperfuncoids are filters on the lattice of all finite unions of products.

Problem   Is a bijection from hyperfuncoids to:
\item prestaroids on ; \item staroids on ; \item completary staroids on ?

If yes, is defining the inverse bijection? If not, characterize the image of the function defined on .

Consider also the variant of this problem with the set replaced with the set of complements of elements of the set .

Keywords: hyperfuncoids; multidimensional

Another conjecture about reloids and funcoids ★★

Author(s): Porton

Definition   for reloid .
Conjecture   for every funcoid .

Note: it is known that (see below mentioned online article).

Keywords:

Inequality for square summable complex series ★★

Author(s): Retkes

Conjecture   For all the following inequality holds

Keywords: Inequality

One-way functions exist ★★★★

Author(s):

Conjecture   One-way functions exist.

Keywords: one way function

Graceful Tree Conjecture ★★★

Author(s):

Conjecture   All trees are graceful

Keywords: combinatorics; graceful labeling

3-Colourability of Arrangements of Great Circles ★★

Consider a set of great circles on a sphere with no three circles meeting at a point. The arrangement graph of has a vertex for each intersection point, and an edge for each arc directly connecting two intersection points. So this arrangement graph is 4-regular and planar.

Conjecture   Every arrangement graph of a set of great circles is -colourable.

Keywords: arrangement graph; graph coloring

Chromatic Number of Common Graphs ★★

Author(s): Hatami; Hladký; Kráľ; Norine; Razborov

Question   Do common graphs have bounded chromatic number?

Keywords: common graph

Erdős–Straus conjecture ★★

Author(s): Erdos; Straus

Conjecture

For all , there exist positive integers , , such that .

Keywords: Egyptian fraction

The 3n+1 conjecture ★★★

Author(s): Collatz

Conjecture   Let if is odd and if is even. Let . Assume we start with some number and repeatedly take the of the current number. Prove that no matter what the initial number is we eventually reach .

Keywords: integer sequence