filter bases


Chain-meet-closed sets ★★

Author(s): Porton

Let $ \mathfrak{A} $ is a complete lattice. I will call a filter base a nonempty subset $ T $ of $ \mathfrak{A} $ such that $ \forall a,b\in T\exists c\in T: (c\le a\wedge c\le b) $.

Definition   A subset $ S $ of a complete lattice $ \mathfrak{A} $ is chain-meet-closed iff for every non-empty chain $ T\in\mathscr{P}S $ we have $ \bigcap T\in S $.
Conjecture   A subset $ S $ of a complete lattice $ \mathfrak{A} $ is chain-meet-closed iff for every filter base $ T\in\mathscr{P}S $ we have $ \bigcap T\in S $.

Keywords: chain; complete lattice; filter bases; filters; linear order; total order

Syndicate content