knot space


Realisation problem for the space of knots in the 3-sphere ★★

Author(s): Budney

Problem   Given a link $ L $ in $ S^3 $, let the symmetry group of $ L $ be denoted $ Sym(L) = \pi_0 Diff(S^3,L) $ ie: isotopy classes of diffeomorphisms of $ S^3 $ which preserve $ L $, where the isotopies are also required to preserve $ L $.

Now let $ L $ be a hyperbolic link. Assume $ L $ has the further `Brunnian' property that there exists a component $ L_0 $ of $ L $ such that $ L \setminus L_0 $ is the unlink. Let $ A_L $ be the subgroup of $ Sym(L) $ consisting of diffeomorphisms of $ S^3 $ which preserve $ L_0 $ together with its orientation, and which preserve the orientation of $ S^3 $.

There is a representation $ A_L \to \pi_0 Diff(L \setminus L_0) $ given by restricting the diffeomorphism to the $ L \setminus L_0 $. It's known that $ A_L $ is always a cyclic group. And $ \pi_0 Diff(L \setminus L_0) $ is a signed symmetric group -- the wreath product of a symmetric group with $ \mathbb Z_2 $.

Problem: What representations can be obtained?

Keywords: knot space; symmetry

Syndicate content