![](/files/happy5.png)
Kühn, Daniella
Simultaneous partition of hypergraphs ★★
Problem Let
and
be two
-uniform hypergraph on the same vertex set
. Does there always exist a partition of
into
classes
such that for both
, at least
hyperedges of
meet each of the classes
?
![$ H_1 $](/files/tex/eb41970b0531bb084fea9f6967da01b53f441664.png)
![$ H_2 $](/files/tex/2d70749ca9db234020c5071434ce58006623b919.png)
![$ r $](/files/tex/535dee6c3b72bcc4d571239ed00be162ee1e6fbe.png)
![$ V $](/files/tex/517af4139f21bb21424f7896561555919bc4678a.png)
![$ V $](/files/tex/517af4139f21bb21424f7896561555919bc4678a.png)
![$ r $](/files/tex/535dee6c3b72bcc4d571239ed00be162ee1e6fbe.png)
![$ V_1, \dots , V_r $](/files/tex/9840205fdc1959213e766b6ed6ddd1dd952dc228.png)
![$ i=1,2 $](/files/tex/1db9f0079a9ca23741381d2fbc830c48d730c458.png)
![$ r!m_i/r^r -o(m_i) $](/files/tex/d65114aa913d6d3c960fc0fff99b77050111639d.png)
![$ H_i $](/files/tex/b5eebbb6562e3e98766f53decb43a78b1f076151.png)
![$ V_1, \dots , V_r $](/files/tex/9840205fdc1959213e766b6ed6ddd1dd952dc228.png)
Keywords:
Complexity of the H-factor problem. ★★
An -factor in a graph
is a set of vertex-disjoint copies of
covering all vertices of
.
Problem Let
be a fixed positive real number and
a fixed graph. Is it NP-hard to determine whether a graph
on
vertices and minimum degree
contains and
-factor?
![$ c $](/files/tex/dccee841f3f498c2c58fa6ae1c1403c5a88c5b8d.png)
![$ H $](/files/tex/76c7b422c8e228780f70a4f31614cfcf3f831c65.png)
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ n $](/files/tex/ec63d7020a64c039d5f6703b8fa3ab7393358b5b.png)
![$ cn $](/files/tex/d86cd3be7381a5c384b9e02ce96029e79af296a1.png)
![$ H $](/files/tex/76c7b422c8e228780f70a4f31614cfcf3f831c65.png)
Keywords:
![Syndicate content Syndicate content](/misc/feed.png)