![](/files/happy5.png)
Simultaneous partition of hypergraphs
Problem Let
and
be two
-uniform hypergraph on the same vertex set
. Does there always exist a partition of
into
classes
such that for both
, at least
hyperedges of
meet each of the classes
?
![$ H_1 $](/files/tex/eb41970b0531bb084fea9f6967da01b53f441664.png)
![$ H_2 $](/files/tex/2d70749ca9db234020c5071434ce58006623b919.png)
![$ r $](/files/tex/535dee6c3b72bcc4d571239ed00be162ee1e6fbe.png)
![$ V $](/files/tex/517af4139f21bb21424f7896561555919bc4678a.png)
![$ V $](/files/tex/517af4139f21bb21424f7896561555919bc4678a.png)
![$ r $](/files/tex/535dee6c3b72bcc4d571239ed00be162ee1e6fbe.png)
![$ V_1, \dots , V_r $](/files/tex/9840205fdc1959213e766b6ed6ddd1dd952dc228.png)
![$ i=1,2 $](/files/tex/1db9f0079a9ca23741381d2fbc830c48d730c458.png)
![$ r!m_i/r^r -o(m_i) $](/files/tex/d65114aa913d6d3c960fc0fff99b77050111639d.png)
![$ H_i $](/files/tex/b5eebbb6562e3e98766f53decb43a78b1f076151.png)
![$ V_1, \dots , V_r $](/files/tex/9840205fdc1959213e766b6ed6ddd1dd952dc228.png)
The bound on the number of hyperedges is what one would expect for a random partition. For graphs, the question was answered in the affirmative in [KO]. Keevash and Sudakov observed that the answer is negative if we consider many hypergraphs instead of just 2 (see [KO] for the example).
Bibliography
*[KO] D. Kühn and D. Osthus, Maximizing several cuts simultaneously, Combinatorics, Probability and Computing 16 (2007), 277-283.
* indicates original appearance(s) of problem.