
nowhere-zero flows
Circular flow numbers of $r$-graphs ★★
Author(s): Steffen
A nowhere-zero -flow
on
is an orientation
of
together with a function
from the edge set of
into the real numbers such that
, for all
, and
.
A -regular graph
is a
-graph if
for every
with
odd.
Conjecture Let
be an integer. If
is a
-graph, then
.




Keywords: flow conjectures; nowhere-zero flows
