![](/files/happy5.png)
![$ r $](/files/tex/535dee6c3b72bcc4d571239ed00be162ee1e6fbe.png)
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ r $](/files/tex/535dee6c3b72bcc4d571239ed00be162ee1e6fbe.png)
Let be a graph of order
. Denote by
the number of
-matchings in
. The matching polynomial of
is defined as
It is known that every matching polynomial has only real roots. See [HL, GG].
It would be interesting to solve the Conjecture even for , that is to find a vertex transitive graph whose matching polynomial has a nonsimple root. Such a graph would not have a hamiltonian path (see [HL, GG]), thus giving a negative answer to a problem of Lovász.
This conjecture is false.
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ \theta $](/files/tex/a8c936b7aafb8d9cb0df4df33c11d057c6ba69d8.png)
![$ \mu(G,x) $](/files/tex/ebcbbe73fea5960b3b2b38fd94c10e8be5ddbf7d.png)
![$ u $](/files/tex/06183efdad837019eb0937c4e40f9e7beaa2e8d8.png)
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ \theta $](/files/tex/a8c936b7aafb8d9cb0df4df33c11d057c6ba69d8.png)
![$ \theta $](/files/tex/a8c936b7aafb8d9cb0df4df33c11d057c6ba69d8.png)
![$ \mu(G\backslash u,x) $](/files/tex/9d9bbbda494ebe312536f09a7cfdc15a3e2f81ea.png)
![$ \theta $](/files/tex/a8c936b7aafb8d9cb0df4df33c11d057c6ba69d8.png)
![$ \mu(G,x) $](/files/tex/ebcbbe73fea5960b3b2b38fd94c10e8be5ddbf7d.png)
In [K], Ku and Chen prove the following analogue of Gallai's Lemma.
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ \theta $](/files/tex/a8c936b7aafb8d9cb0df4df33c11d057c6ba69d8.png)
![$ \mu(G,x) $](/files/tex/ebcbbe73fea5960b3b2b38fd94c10e8be5ddbf7d.png)
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ \theta $](/files/tex/a8c936b7aafb8d9cb0df4df33c11d057c6ba69d8.png)
![$ \theta $](/files/tex/a8c936b7aafb8d9cb0df4df33c11d057c6ba69d8.png)
![$ \mu(G,x) $](/files/tex/ebcbbe73fea5960b3b2b38fd94c10e8be5ddbf7d.png)
Since every graph contains a -essential vertex, all vertices of a vertex-transitive graph are
-essential. Thus the matchings polynomial of any vertex-transitive graph has only simple roots.
Bibliography
[HL] O. J. Heilmann, E. H. Lieb, Theory of monomer-dimer systems, Comm. Math. Phys. 25 (1972), 190-232. MathSciNet
[GG] C. D. Godsil, I. Gutman, On the theory of the matching polynomial, J. Graph Theory 5 (1981), 137-144. MathSciNet
[K] Cheng Yeaw Ku and William Chen, An Analogue of the Gallai-Edmunds Structure Theorem for Nonzero Roots of the Matchings Polynomial (June 2008). Preprint available from arXiv
[M] B. Mohar, Problem of the Month
* indicates original appearance(s) of problem.