![](/files/happy5.png)
Conjecture The poset of multifuncoids of the form
is for every sets
and
:
![$ (\mathscr{P}\mho)^n $](/files/tex/02023fd10859168be6be125aa8d3912904f57a27.png)
![$ \mho $](/files/tex/8a60ffddf5f015b5658f273c0698af378fdebbde.png)
![$ n $](/files/tex/ec63d7020a64c039d5f6703b8fa3ab7393358b5b.png)
- \item atomic; \item atomistic.
See below for definition of all concepts and symbols used to in this conjecture.
Refer to this Web site for the theory which I now attempt to generalize.
Definition A free star on a join-semilattice
with least element 0 is a set
such that
and
![$ \mathfrak{A} $](/files/tex/702b76abd81b24daaf0e6bc2a191fb964b09d1b2.png)
![$ S $](/files/tex/d2b76a0ee5465d3e3ecc846c8e3d632edd8b2bbf.png)
![$ 0 \not\in S $](/files/tex/c463791790caa96fa1b5b7cab0e06d67837b699e.png)
![\[ \forall A, B \in \mathfrak{A}: \left( A \cup B \in S \Leftrightarrow A \in S \vee B \in S \right) . \]](/files/tex/70420d16ddf609e4c505908182520a5bcf379d3e.png)
Definition Let
be a family of posets,
(
has the order of function space of posets),
,
. Then
![$ \mathfrak{A} $](/files/tex/702b76abd81b24daaf0e6bc2a191fb964b09d1b2.png)
![$ f \in \mathscr{P} \prod \mathfrak{A} $](/files/tex/f19dc00476ce64a53ac23d224eb3b114c4b6428c.png)
![$ \prod \mathfrak{A} $](/files/tex/2c9c9d07355987c6df23d313459d3e1faca00437.png)
![$ i \in \ensuremath{\operatorname{dom}}\mathfrak{A} $](/files/tex/9aa2a34eee3a3e621f3dc2f7d3f8c3c4b04cab41.png)
![$ L \in \prod \mathfrak{A}|_{\left( \ensuremath{\operatorname{dom}}\mathfrak{A} \right) \setminus \left\{ i \right\}} $](/files/tex/1fe99dd1b43e5334d437ca46dec2cd1481975496.png)
![\[ \left( \ensuremath{\operatorname{val}}f \right)_i L = \left\{ X \in \mathfrak{A}_i \hspace{0.5em} | \hspace{0.5em} L \cup \left\{ (i ; X) \right\} \in f \right\} . \]](/files/tex/402ce92b70bfd908eefa69f8ec7f3b5cd3cb72d2.png)
Definition Let
is a family of posets. A multidimensional funcoid (or multifuncoid for short) of the form
is an
such that we have that:
![$ \mathfrak{A} $](/files/tex/702b76abd81b24daaf0e6bc2a191fb964b09d1b2.png)
![$ \mathfrak{A} $](/files/tex/702b76abd81b24daaf0e6bc2a191fb964b09d1b2.png)
![$ f \in \mathscr{P} \prod \mathfrak{A} $](/files/tex/549eb9137ca23d96fcd29b48666a1612a8a5818b.png)
- \item
![$ \left( \tmop{val} f \right)_i L $](/files/tex/f70c229dcc28ac2c5754bedd2a13d8fe92718166.png)
![$ i \in \tmop{dom} \mathfrak{A} $](/files/tex/81ebd97ee916a57c2192d5a340ebfbdb9fa96888.png)
![$ L \in \prod \mathfrak{A}|_{\left( \tmop{dom} \mathfrak{A} \right) \setminus \left\{ i \right\}} $](/files/tex/380bb543c93d88fe89d8b7493436a5f513775736.png)
\item is an upper set.
is a function space over a poset
that is
for
.
Bibliography
* indicates original appearance(s) of problem.