![](/files/happy5.png)
Let be a class of finite relational structures. We denote by
the number of structures in
over the labeled set
. For any class
definable in monadic second-order logic with unary and binary relation symbols, Specker and Blatter showed that, for every
, the function
is ultimately periodic modulo
.
Our exposition follows closely [BS84].
Counting labeled structures modulo ![$ m $](/files/tex/ddaab6dc091926fb1da549195000491cefae85c1.png)
Let be a class of finite structures for one binary relation symbol
. We define for
Examples:
- \item If
![$ C=U $](/files/tex/93447796b2889504e35cd7d4c471a33c633edbb2.png)
![$ R $](/files/tex/201b5ff8bf9045c34a583adc2741b00adf1fd14c.png)
![$ f_U(n)= 2^{n^2} $](/files/tex/5acf88bf09f2f2ff94e6959a7dac893b96a50cfb.png)
![$ C=B $](/files/tex/7bbd04889bae8d7ce996c1952cd02e436ae30205.png)
![$ f_B(n)= n! $](/files/tex/67233766890626b2e3055afbd913e9476399c50d.png)
![$ C= G $](/files/tex/794196c20a4d22fc9b89bf7171c46ff56f743c29.png)
![$ f_G(n)= 2^{\binom{n}{2}} $](/files/tex/23441c10b495950c1bdc590708cc2b119f17959e.png)
![$ C=E $](/files/tex/051b6526e96277ebf8ed350e48bdcda918916a07.png)
![$ f_E(n)= B_n $](/files/tex/d2cd15996e9b27b9326f0c68f9faec5abd50b897.png)
![$ C=E_2 $](/files/tex/675f7860db4a19a6bb16ada1818a35ad1f444c23.png)
![$ f_{E_2}(2n)= \frac{1}{2} \cdot {\binom{2n}{n}} $](/files/tex/a3f81e042daa4676137bebe45b08ab02ebf2c006.png)
![$ f_{E_2}(2n+1)= 0 $](/files/tex/f2fe90df5608b7a97dbdee5b83273ef928b6f767.png)
![$ C=T $](/files/tex/e6241b573fd4fe177aa689d8a28863f140575c83.png)
![$ f_T(n)= n^{n-2} $](/files/tex/35c700ef7dd8932f0fe7a1797822abfc748dc5c9.png)
We observe the following:
And for each the functions,
,
,
are ultimately periodic
.
However, iff
, hence is not periodic
.
Monadic second-order logic definable classes
The first four examples (all relations, all bijections, all graphs, all equivalence relations) are definable in First Order Logic . The trees are definable in Monadic Second Order Logic
..
is definable in Second Order Logic
, but it is not
-definable. If we expand
to have the bijection between the classes we get structures with two binary relations. The class is now
-definable. Let us denote the corresponding counting function
. We have
for
large enough.
Periodicity and linear recurrence relations
The periodicity of
is usually established by exhibiting a linear recurrence relation:
There exists and integers
such that for all
Examples.
- \item In the case of
![$ f_C(n) = 2^{n^2} $](/files/tex/621a47c15c9333c8bcda3e8ff49f4235c8c0d017.png)
![$$ f_C(n) = f_C(n-2) + 2 \cdot f_C(n-1) \pmod{3} $$](/files/tex/bf3b1239e79686db0147833d9a1958735812bea5.png)
![$ f_C(n) = n! $](/files/tex/dbe1ed73b514d1ececc4f4300866a2c26611bbad.png)
![$ m $](/files/tex/ddaab6dc091926fb1da549195000491cefae85c1.png)
![$$ f_C(n) = 0 \cdot f_C(n-1) \pmod{m} $$](/files/tex/90a2ab85a9ddd630cf470fdf33eed64fc0404e69.png)
![$ f_C $](/files/tex/ec59bce778c2d31abeace518c3222d796faa8209.png)
The Blatter-Specker Theorem
![$ \tau $](/files/tex/706065ef4c2d4b462dff91b9ad9fc69d846c15dc.png)
![$ C $](/files/tex/05d3558ef52267cc1af40e658352d98883668ee3.png)
![$ \tau $](/files/tex/706065ef4c2d4b462dff91b9ad9fc69d846c15dc.png)
![$ \text{MSO} $](/files/tex/e4f938d499ee26825afedaf106892a7ca85e30ae.png)
![$ m \in \mathbb{N} $](/files/tex/88a27613e47cbe6d1aec6dc4b342b3265e2670aa.png)
![$ f_C(n) $](/files/tex/0424410bfa103527ea1bad45a617f3c858938218.png)
![$ \pmod{m} $](/files/tex/128cae7c8fbd826b0eb18dda6ac87ed1facf1af2.png)
Moreover, there exists and integers
such that for all
i.e we have a linear recurrence relation.
In [F03] Fischer showed that the Specker-Blatter Theorem does not hold for quaternary relations.
The case of ternary relations remains open.
See also [FM06] for further developments on the topic.
Bibliography
[BS84]* C. Blatter and E. Specker, Recurrence relations for the number of labeled structures on a finite set, Logic and Machines: Decision Problems and Complexity, E. Börger, G. Hasenjaeger and D. Rödding, eds, LNCS 171 (1984) pp. 43-61.
[F03] E. Fischer, The Specker-Blatter theorem does not hold for quaternary relations, Journal of Combinatorial Theory Series A 103(2003), 121-136.
[FM06] E. Fischer and J. A. Makowsky, The Specker-Blatter Theorem revisited: Generating functions for definable classes of stuctures. In Computing and Combinatorics (COCOON 2003) Proc., LNCS vol. 2697 (2003), 90-101.
[S88] E. Specker, Application of Logic and Combinatorics to Enumeration Problems, Trends in Theoretical Computer Science, E. Börger ed., Computer Science Press, 1988, pp. 141-169. Reprinted in: Ernst Specker, Selecta, Birkhäuser 1990, pp. 324-350.
* indicates original appearance(s) of problem.