
Turán number of a finite family.
Given a finite family of graphs and an integer
, the Turán number
of
is the largest integer
such that there exists a graph on
vertices with
edges which contains no member of
as a subgraph.



For the case when consists of even cycles, this would mean that (up to constants) the Turán number of
is given by that of the longest cycle in
. Verstraëte (see [KO]) conjectured something stronger:






This conjecture was motivated by a result of Györi [G] who showed that every bipartite -free graph
has a
-free subgraph which contains at least half of the edges of
. The case
was proved in [KO].
Bibliography
*[ES] P.Erdös and M. Simonovits, Compactness results in extremal graph theory, Combinatorica 2 (1982), 275–288.
[KO] D. Kühn and D. Osthus, 4-cycles in graphs without a given even cycle, J. Graph Theory 48 (2005), 147-156.
[G] E. Györi, -free bipartite graphs and product representation of squares, Discrete Math. 165/166 (1997), 371-375.
* indicates original appearance(s) of problem.