![](/files/happy5.png)
Alon, Noga
The Alon-Tarsi basis conjecture ★★
Author(s): Alon; Linial; Meshulam
Conjecture If
are invertible
matrices with entries in
for a prime
, then there is a
submatrix
of
so that
is an AT-base.
![$ B_1,B_2,\ldots B_p $](/files/tex/d7626d3626b2054ebc198940785a7861d2fae9c2.png)
![$ n \times n $](/files/tex/fd981d449b91b1f4889d87406e6aa7d8acfb5d68.png)
![$ {\mathbb Z}_p $](/files/tex/e8c94ceb5a9d688bff114c12f7fe9fe47ef955fc.png)
![$ p $](/files/tex/928cd9d544fdea62f88a627aaee28c416c4366c0.png)
![$ n \times (p-1)n $](/files/tex/18102393d42ad781eb0253bf9bee94b60757ed23.png)
![$ A $](/files/tex/7a8d9782350e8eb5a84c149576d83160492cbdd3.png)
![$ [B_1 B_2 \ldots B_p] $](/files/tex/86661dc2948aeca789b4392c2e2a9cbf7d96f735.png)
![$ A $](/files/tex/7a8d9782350e8eb5a84c149576d83160492cbdd3.png)
Keywords: additive basis; matrix
![Syndicate content Syndicate content](/misc/feed.png)