matrix


The Alon-Tarsi basis conjecture ★★

Author(s): Alon; Linial; Meshulam

Conjecture   If $ B_1,B_2,\ldots B_p $ are invertible $ n \times n $ matrices with entries in $ {\mathbb Z}_p $ for a prime $ p $, then there is a $ n \times (p-1)n $ submatrix $ A $ of $ [B_1 B_2 \ldots B_p] $ so that $ A $ is an AT-base.

Keywords: additive basis; matrix

The permanent conjecture ★★

Author(s): Kahn

Conjecture   If $ A $ is an invertible $ n \times n $ matrix, then there is an $ n \times n $ submatrix $ B $ of $ [A A] $ so that $ perm(B) $ is nonzero.

Keywords: invertible; matrix; permanent

The additive basis conjecture ★★★

Author(s): Jaeger; Linial; Payan; Tarsi

Conjecture   For every prime $ p $, there is a constant $ c(p) $ (possibly $ c(p)=p $) so that the union (as multisets) of any $ c(p) $ bases of the vector space $ ({\mathbb Z}_p)^n $ contains an additive basis.

Keywords: additive basis; matrix

Syndicate content