![](/files/happy5.png)
independent set
The Double Cap Conjecture ★★
Author(s): Kalai
Conjecture The largest measure of a Lebesgue measurable subset of the unit sphere of
containing no pair of orthogonal vectors is attained by two open caps of geodesic radius
around the north and south poles.
![$ \mathbb{R}^n $](/files/tex/2010c953180b3521ec2f66d10e1f40ec71d44574.png)
![$ \pi/4 $](/files/tex/01608ea3b80f85b77096d16610a43e184782386c.png)
Keywords: combinatorial geometry; independent set; orthogonality; projective plane; sphere
Hitting every large maximal clique with a stable set ★★
Conjecture There is a universal constant
such that every graph contains a stable set which intersects every maximal clique of size
.
![$ \epsilon>0 $](/files/tex/b1b64614e8f5ba1571715ad1ac108f193e820416.png)
![$ (1-\epsilon)(\Delta+1) $](/files/tex/eab2194a527611df5ba3167fc87784074544117b.png)
Conjecture Every graph contains a stable set which intersects every maximal clique of size
.
![$ >\frac{2}{3}(\Delta+1) $](/files/tex/8e59572a67c169e0fea8e361a598a18e90e5ca2f.png)
Keywords: independent set; maximal clique
Aharoni-Berger conjecture ★★★
Conjecture If
are matroids on
and
for every partition
of
, then there exists
with
which is independent in every
.
![$ M_1,\ldots,M_k $](/files/tex/368dea3f4a89576f8e4eebf3241a6ef062e5b5d9.png)
![$ E $](/files/tex/aedbef97f3db174b677f00be580a095e7fefa310.png)
![$ \sum_{i=1}^k rk_{M_i}(X_i) \ge \ell (k-1) $](/files/tex/d896134dc1e4119543db8e0baaebe50b9bb34085.png)
![$ \{X_1,\ldots,X_k\} $](/files/tex/af99ea0d6ceb5907ffb549d85a7c7e711c6b91c7.png)
![$ E $](/files/tex/aedbef97f3db174b677f00be580a095e7fefa310.png)
![$ X \subseteq E $](/files/tex/3b78a133c1f7e4ab67c2c7c5a7fbba992d13e9dc.png)
![$ |X| = \ell $](/files/tex/6ed3addf64c5678ff6cd1add3575f29c9a04af48.png)
![$ M_i $](/files/tex/71c6239abfbaf80e551a379622380b245aaae23a.png)
Keywords: independent set; matroid; partition
![Syndicate content Syndicate content](/misc/feed.png)