![](/files/happy5.png)
planar
Degenerate colorings of planar graphs ★★★
Author(s): Borodin
A graph is
-degenerate if every subgraph of
has a vertex of degree
.
Conjecture Every simple planar graph has a 5-coloring so that for
, the union of any
color classes induces a
-degenerate graph.
![$ 1 \le k \le 4 $](/files/tex/8444626f9ce5a1ce2947ad77497c0627b390df33.png)
![$ k $](/files/tex/c450c3185f7285cfa0b88d3a903c54f7df601201.png)
![$ (k-1) $](/files/tex/bc98477dfed13603bd35290b8c8d5cd9c5af536f.png)
Keywords: coloring; degenerate; planar
The Two Color Conjecture ★★
Author(s): Neumann-Lara
Conjecture If
is an orientation of a simple planar graph, then there is a partition of
into
so that the graph induced by
is acyclic for
.
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ V(G) $](/files/tex/b324b54d8674fa66eb7e616b03c7a601ccdab6b8.png)
![$ \{X_1,X_2\} $](/files/tex/1ac50179d3c46ba43d2b8183a945de84c223f351.png)
![$ X_i $](/files/tex/4d0fffaf276df9eeca81fca1efb9e42157b0a9f9.png)
![$ i=1,2 $](/files/tex/1db9f0079a9ca23741381d2fbc830c48d730c458.png)
![Syndicate content Syndicate content](/misc/feed.png)