
Hoang, Chinh T.
2-colouring a graph without a monochromatic maximum clique ★★
Conjecture If
is a non-empty graph containing no induced odd cycle of length at least
, then there is a
-vertex colouring of
in which no maximum clique is monochromatic.




Keywords: maximum clique; Partitioning
Hoàng-Reed Conjecture ★★★
Conjecture Every digraph in which each vertex has outdegree at least
contains
directed cycles
such that
meets
in at most one vertex,
.






Keywords:
The stubborn list partition problem ★★
Author(s): Cameron; Eschen; Hoang; Sritharan
Problem Does there exist a polynomial time algorithm which takes as input a graph
and for every vertex
a subset
of
, and decides if there exists a partition of
into
so that
only if
and so that
are independent,
is a clique, and there are no edges between
and
?












Keywords: list partition; polynomial algorithm
