![](/files/happy5.png)
Reed, Bruce A.
Forcing a 2-regular minor ★★
Conjecture Every graph with average degree at least
contains every 2-regular graph on
vertices as a minor.
![$ \frac{4}{3}t-2 $](/files/tex/e3058b3a3212b3db0404690975e13ff4036eafd0.png)
![$ t $](/files/tex/4761b031c89840e8cd2cda5b53fbc90c308530f3.png)
Keywords: minors
Fractional Hadwiger ★★
Author(s): Harvey; Reed; Seymour; Wood
Conjecture For every graph
,
(a)![$ \chi_f(G)\leq\text{had}(G) $](/files/tex/50fb973c4dd31a8fde6ae9c6a9ba74c3eca2849a.png)
(b)![$ \chi(G)\leq\text{had}_f(G) $](/files/tex/6ef2849ce5271ed2eb983602db9e4948dcc30e87.png)
(c)
.
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
(a)
![$ \chi_f(G)\leq\text{had}(G) $](/files/tex/50fb973c4dd31a8fde6ae9c6a9ba74c3eca2849a.png)
(b)
![$ \chi(G)\leq\text{had}_f(G) $](/files/tex/6ef2849ce5271ed2eb983602db9e4948dcc30e87.png)
(c)
![$ \chi_f(G)\leq\text{had}_f(G) $](/files/tex/7e131f28dcdff73d40ea8cfaf990a2ad70fb9952.png)
Keywords: fractional coloring, minors
Weighted colouring of hexagonal graphs. ★★
Conjecture There is an absolute constant
such that for every hexagonal graph
and vertex weighting
,
![$ c $](/files/tex/dccee841f3f498c2c58fa6ae1c1403c5a88c5b8d.png)
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ p:V(G)\rightarrow \mathbb{N} $](/files/tex/6b14cbdc1cda96520fd87d9507b262f943ccf8ba.png)
![$$\chi(G,p) \leq \frac{9}{8}\omega(G,p) + c $$](/files/tex/9b4ccf7620c2a90a97c40177afd9201723864ba8.png)
Keywords:
Hoàng-Reed Conjecture ★★★
Conjecture Every digraph in which each vertex has outdegree at least
contains
directed cycles
such that
meets
in at most one vertex,
.
![$ k $](/files/tex/c450c3185f7285cfa0b88d3a903c54f7df601201.png)
![$ k $](/files/tex/c450c3185f7285cfa0b88d3a903c54f7df601201.png)
![$ C_1, \ldots, C_k $](/files/tex/0df670e43d33838d6e04e86a590da56100880e60.png)
![$ C_j $](/files/tex/b1365660549601f059d1b19f13f120a8fd821c25.png)
![$ \cup_{i=1}^{j-1}C_i $](/files/tex/b45609a301fcc110ef904d9f320f045d3947da71.png)
![$ 2 \leq j \leq k $](/files/tex/f4a8b4068d7bbb76eee5a6457f5fa87ff65184f1.png)
Keywords:
Antidirected trees in digraphs ★★
Author(s): Addario-Berry; Havet; Linhares Sales; Reed; Thomassé
An antidirected tree is an orientation of a tree in which every vertex has either indegree 0 or outdergree 0.
Conjecture Let
be a digraph. If
, then
contains every antidirected tree of order
.
![$ D $](/files/tex/b8653a25aff72e3dacd3642492c24c2241f0058c.png)
![$ |A(D)| > (k-2) |V(D)| $](/files/tex/9d92913ac31fe6777abefdb2c40e6ec0c94bcf8a.png)
![$ D $](/files/tex/b8653a25aff72e3dacd3642492c24c2241f0058c.png)
![$ k $](/files/tex/c450c3185f7285cfa0b88d3a903c54f7df601201.png)
Keywords:
Domination in cubic graphs ★★
Author(s): Reed
Problem Does every 3-connected cubic graph
satisfy
?
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ \gamma(G) \le \lceil |G|/3 \rceil $](/files/tex/56ca6c717dbe994f156838c153c99a68e2d812e8.png)
Keywords: cubic graph; domination
Bounding the chromatic number of triangle-free graphs with fixed maximum degree ★★
Conjecture A triangle-free graph with maximum degree
has chromatic number at most
.
![$ \Delta $](/files/tex/e3f8e135c571143e94f1d4f236326b862080b200.png)
![$ \ceil{\frac{\Delta}{2}}+2 $](/files/tex/522a3a86b51cce46cfcff77891e669d1b9ff9147.png)
Keywords: chromatic number; girth; maximum degree; triangle free
Reed's omega, delta, and chi conjecture ★★★
Author(s): Reed
For a graph , we define
to be the maximum degree,
to be the size of the largest clique subgraph, and
to be the chromatic number of
.
Conjecture
for every graph
.
![$ \chi(G) \le \ceil{\frac{1}{2}(\Delta(G)+1) + \frac{1}{2}\omega(G)} $](/files/tex/e499e4dc61f5e76d5be51a2064d6e000a8c82f30.png)
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
Keywords: coloring
![Syndicate content Syndicate content](/misc/feed.png)