![](/files/happy5.png)
Kostochka, Alexandr V.
List Total Colouring Conjecture ★★
Author(s): Borodin; Kostochka; Woodall
Conjecture If
is the total graph of a multigraph, then
.
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ \chi_\ell(G)=\chi(G) $](/files/tex/0a2573f7d1a57016f919f018635cd3f9f9875fc4.png)
Keywords: list coloring; Total coloring; total graphs
Acyclic list colouring of planar graphs. ★★★
Author(s): Borodin; Fon-Der-Flasss; Kostochka; Raspaud; Sopena
Conjecture Every planar graph is acyclically 5-choosable.
Keywords:
The Borodin-Kostochka Conjecture ★★
Conjecture Every graph with maximum degree
has chromatic number at most
.
![$ \Delta \geq 9 $](/files/tex/bdef913d8b11dd941503a47d9902308ca0f4a15a.png)
![$ \max\{\Delta-1, \omega\} $](/files/tex/aec77cc3837a98ea739a3c68e7e7ba5d90ec8cc4.png)
Keywords:
Bounding the chromatic number of triangle-free graphs with fixed maximum degree ★★
Conjecture A triangle-free graph with maximum degree
has chromatic number at most
.
![$ \Delta $](/files/tex/e3f8e135c571143e94f1d4f236326b862080b200.png)
![$ \ceil{\frac{\Delta}{2}}+2 $](/files/tex/522a3a86b51cce46cfcff77891e669d1b9ff9147.png)
Keywords: chromatic number; girth; maximum degree; triangle free
![Syndicate content Syndicate content](/misc/feed.png)