![](/files/happy5.png)
triangle free
Bounding the chromatic number of triangle-free graphs with fixed maximum degree ★★
Conjecture A triangle-free graph with maximum degree
has chromatic number at most
.
![$ \Delta $](/files/tex/e3f8e135c571143e94f1d4f236326b862080b200.png)
![$ \ceil{\frac{\Delta}{2}}+2 $](/files/tex/522a3a86b51cce46cfcff77891e669d1b9ff9147.png)
Keywords: chromatic number; girth; maximum degree; triangle free
Non-edges vs. feedback edge sets in digraphs ★★★
Author(s): Chudnovsky; Seymour; Sullivan
For any simple digraph , we let
be the number of unordered pairs of nonadjacent vertices (i.e. the number of non-edges), and
be the size of the smallest feedback edge set.
Conjecture If
is a simple digraph without directed cycles of length
, then
.
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ \le 3 $](/files/tex/2dbc994c29a8272f2fa20bee6216f47315c47aa7.png)
![$ \beta(G) \le \frac{1}{2} \gamma(G) $](/files/tex/d2838535a0339a448fba3bbbab8586020be5f886.png)
Keywords: acyclic; digraph; feedback edge set; triangle free
Circular coloring triangle-free subcubic planar graphs ★★
Problem Does every triangle-free planar graph of maximum degree three have circular chromatic number at most
?
![$ \frac{20}{7} $](/files/tex/bad459acf1e14f972d8bf6c9f92912e0be945739.png)
Keywords: circular coloring; planar graph; triangle free
Unions of triangle free graphs ★★★
Problem Does there exist a graph with no subgraph isomorphic to
which cannot be expressed as a union of
triangle free graphs?
![$ K_4 $](/files/tex/03778d11eadbb74fc862e7762ec7ce773f0b9413.png)
![$ \aleph_0 $](/files/tex/ae61eb32cc3c2cd0fc395f5f137af2ecebcc6f92.png)
Keywords: forbidden subgraph; infinite graph; triangle free
Triangle free strongly regular graphs ★★★
Author(s):
Problem Is there an eighth triangle free strongly regular graph?
Keywords: strongly regular; triangle free
![Syndicate content Syndicate content](/misc/feed.png)