planar graph


Obstacle number of planar graphs

Author(s): Alpert; Koch; Laison

Does there exist a planar graph with obstacle number greater than 1? Is there some $ k $ such that every planar graph has obstacle number at most $ k $?

Keywords: graph drawing; obstacle number; planar graph; visibility graph

Finding k-edge-outerplanar graph embeddings ★★

Author(s): Bentz

Conjecture   It has been shown that a $ k $-outerplanar embedding for which $ k $ is minimal can be found in polynomial time. Does a similar result hold for $ k $-edge-outerplanar graphs?

Keywords: planar graph; polynomial algorithm

Approximation ratio for k-outerplanar graphs ★★

Author(s): Bentz

Conjecture   Is the approximation ratio for the Maximum Edge Disjoint Paths (MaxEDP) or the Maximum Integer Multiflow problem (MaxIMF) bounded by a constant in $ k $-outerplanar graphs or tree-width graphs?

Keywords: approximation algorithms; planar graph; polynomial algorithm

Approximation Ratio for Maximum Edge Disjoint Paths problem ★★

Author(s): Bentz

Conjecture   Can the approximation ratio $ O(\sqrt{n}) $ be improved for the Maximum Edge Disjoint Paths problem (MaxEDP) in planar graphs or can an inapproximability result stronger than $ \mathcal{APX} $-hardness?

Keywords: approximation algorithms; Disjoint paths; planar graph; polynomial algorithm

Domination in plane triangulations ★★

Author(s): Matheson; Tarjan

Conjecture   Every sufficiently large plane triangulation $ G $ has a dominating set of size $ \le \frac{1}{4} |V(G)| $.

Keywords: coloring; domination; multigrid; planar graph; triangulation

5-coloring graphs with small crossing & clique numbers ★★

Author(s): Oporowski; Zhao

For a graph $ G $, we let $ cr(G) $ denote the crossing number of $ G $, and we let $ \omega(G) $ denote the size of the largest complete subgraph of $ G $.

Question   Does every graph $ G $ with $ cr(G) \le 5 $ and $ \omega(G) \le 5 $ have a 5-coloring?

Keywords: coloring; crossing number; planar graph

Jones' conjecture ★★

Author(s): Kloks; Lee; Liu

For a graph $ G $, let $ cp(G) $ denote the cardinality of a maximum cycle packing (collection of vertex disjoint cycles) and let $ cc(G) $ denote the cardinality of a minimum feedback vertex set (set of vertices $ X $ so that $ G-X $ is acyclic).

Conjecture   For every planar graph $ G $, $ cc(G)\leq 2cp(G) $.

Keywords: cycle packing; feedback vertex set; planar graph

Oriented chromatic number of planar graphs ★★

Author(s):

An oriented colouring of an oriented graph is assignment $ c $ of colours to the vertices such that no two arcs receive ordered pairs of colours $ (c_1,c_2) $ and $ (c_2,c_1) $. It is equivalent to a homomorphism of the digraph onto some tournament of order $ k $.

Problem   What is the maximal possible oriented chromatic number of an oriented planar graph?

Keywords: oriented coloring; oriented graph; planar graph

Mapping planar graphs to odd cycles ★★★

Author(s): Jaeger

Conjecture   Every planar graph of girth $ \ge 4k $ has a homomorphism to $ C_{2k+1} $.

Keywords: girth; homomorphism; planar graph

Circular coloring triangle-free subcubic planar graphs ★★

Author(s): Ghebleh; Zhu

Problem   Does every triangle-free planar graph of maximum degree three have circular chromatic number at most $ \frac{20}{7} $?

Keywords: circular coloring; planar graph; triangle free

Syndicate content