![](/files/happy5.png)
crossing number
Are different notions of the crossing number the same? ★★★
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![\[ \text{pair-cr}(G) = \text{cr}(G) \]](/files/tex/8cece1e00bb0e9fc122e0a5cad0dab2681cf33a4.png)
The crossing number of a graph
is the minimum number of edge crossings in any drawing of
in the plane. In the pairwise crossing number
, we minimize the number of pairs of edges that cross.
Keywords: crossing number; pair-crossing number
Crossing numbers and coloring ★★★
Author(s): Albertson
We let denote the crossing number of a graph
.
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ \chi(G) \ge t $](/files/tex/cb74f630a3b502fe0bd0726e72880c005ec02d22.png)
![$ cr(G) \ge cr(K_t) $](/files/tex/64703b245f27999c87b0a8e3c56c14e80f1925d4.png)
Keywords: coloring; complete graph; crossing number
Crossing sequences ★★
Author(s): Archdeacon; Bonnington; Siran
![$ (a_0,a_1,a_2,\ldots,0) $](/files/tex/57042c41a7ae61ba126c8f9447c599250d58a490.png)
![$ 0 $](/files/tex/1d8c59cb34a2a35471b98d11ba99311b971a3879.png)
Then there exists a graph that be drawn on a surface with orientable (nonorientable, resp.) genus with
crossings, but not with less crossings.
Keywords: crossing number; crossing sequence
5-coloring graphs with small crossing & clique numbers ★★
For a graph , we let
denote the crossing number of
, and we let
denote the size of the largest complete subgraph of
.
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ cr(G) \le 5 $](/files/tex/a403effa182f63b08ce8a87b127d4400b86db161.png)
![$ \omega(G) \le 5 $](/files/tex/2320b0f36ab8acdec343b9d613e16e4bab300f1f.png)
Keywords: coloring; crossing number; planar graph
Drawing disconnected graphs on surfaces ★★
Author(s): DeVos; Mohar; Samal
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ G_1 $](/files/tex/1475475906abb943f311289729184c527071d32f.png)
![$ G_2 $](/files/tex/7c390ecd91deb4948e85912eba8f5594f03ea2f4.png)
![$ \Sigma $](/files/tex/70e73d02e8dfe5c2df3217d0bb04993df8dd0712.png)
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ \Sigma $](/files/tex/70e73d02e8dfe5c2df3217d0bb04993df8dd0712.png)
![$ G_1 $](/files/tex/1475475906abb943f311289729184c527071d32f.png)
![$ G_2 $](/files/tex/7c390ecd91deb4948e85912eba8f5594f03ea2f4.png)
Keywords: crossing number; surface
The Crossing Number of the Hypercube ★★
The crossing number of
is the minimum number of crossings in all drawings of
in the plane.
The -dimensional (hyper)cube
is the graph whose vertices are all binary sequences of length
, and two of the sequences are adjacent in
if they differ in precisely one coordinate.
![$ \displaystyle \lim \frac{cr(Q_d)}{4^d} = \frac{5}{32} $](/files/tex/8a347f2f5bc9527051396b3f7efcdc793f5c87f0.png)
Keywords: crossing number; hypercube
The Crossing Number of the Complete Bipartite Graph ★★★
Author(s): Turan
The crossing number of
is the minimum number of crossings in all drawings of
in the plane.
![$ \displaystyle cr(K_{m,n}) = \floor{\frac m2} \floor{\frac {m-1}2} \floor{\frac n2} \floor{\frac {n-1}2} $](/files/tex/aecee36502739c16e07eea1fc64a43a9e95e9374.png)
Keywords: complete bipartite graph; crossing number
The Crossing Number of the Complete Graph ★★★
Author(s):
The crossing number of
is the minimum number of crossings in all drawings of
in the plane.
![$ \displaystyle cr(K_n) = \frac 14 \floor{\frac n2} \floor{\frac{n-1}2} \floor{\frac{n-2}2} \floor{\frac{n-3}2} $](/files/tex/ebb1eaf4332defb7fcc42f4cd3f4fcfc7a0138e7.png)
Keywords: complete graph; crossing number
![Syndicate content Syndicate content](/misc/feed.png)