
Oporowski, Bogdan
Book Thickness of Subdivisions ★★
Author(s): Blankenship; Oporowski
Let be a finite undirected simple graph.
A -page book embedding of
consists of a linear order
of
and a (non-proper)
-colouring of
such that edges with the same colour do not cross with respect to
. That is, if
for some edges
, then
and
receive distinct colours.
One can think that the vertices are placed along the spine of a book, and the edges are drawn without crossings on the pages of the book.
The book thickness of , denoted by bt
is the minimum integer
for which there is a
-page book embedding of
.
Let be the graph obtained by subdividing each edge of
exactly once.



Keywords: book embedding; book thickness
5-coloring graphs with small crossing & clique numbers ★★
For a graph , we let
denote the crossing number of
, and we let
denote the size of the largest complete subgraph of
.



Keywords: coloring; crossing number; planar graph
Bounded colorings for planar graphs ★★
Author(s): Alon; Ding; Oporowski; Vertigan






Keywords: coloring; partition; planar graph
