![](/files/happy5.png)
perfect graph
Complete bipartite subgraphs of perfect graphs ★★
Author(s): Fox
Problem Let
be a perfect graph on
vertices. Is it true that either
or
contains a complete bipartite subgraph with bipartition
so that
?
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ n $](/files/tex/ec63d7020a64c039d5f6703b8fa3ab7393358b5b.png)
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ \bar{G} $](/files/tex/1e3dac00cfbbb43d9181a85bc8a5389e16490552.png)
![$ (A,B) $](/files/tex/e0150654d2f6aa6b2ea50e726af4747878a605fc.png)
![$ |A|, |B| \ge n^{1 - o(1)} $](/files/tex/457f19bbb97576457ac692bc6acdd4ac8e9f39a1.png)
Keywords: perfect graph
Bounding the chromatic number of graphs with no odd hole ★★★
Author(s): Gyarfas
Conjecture There exists a fixed function
so that
for every graph
with no odd hole.
![$ f : {\mathbb N} \rightarrow {\mathbb N} $](/files/tex/e5839c90f2b5ca6fe2f58de668c9549b3ad831bd.png)
![$ \chi(G) \le f(\omega(G)) $](/files/tex/4ecaa216fb961541a2aa91c99df9d018ca9e5597.png)
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
Keywords: chi-bounded; coloring; induced subgraph; odd hole; perfect graph
![Syndicate content Syndicate content](/misc/feed.png)