![](/files/happy5.png)
Gyarfas, Andras
Graphs with a forbidden induced tree are chi-bounded ★★★
Author(s): Gyarfas
Say that a family of graphs is
-bounded if there exists a function
so that every
satisfies
.
Conjecture For every fixed tree
, the family of graphs with no induced subgraph isomorphic to
is
-bounded.
![$ T $](/files/tex/79f55d2e1d83a7726c807a70cbe756713b0437b6.png)
![$ T $](/files/tex/79f55d2e1d83a7726c807a70cbe756713b0437b6.png)
![$ \chi $](/files/tex/0308ad82f7a52e8b5406c475bffba60ea6867b7a.png)
Keywords: chi-bounded; coloring; excluded subgraph; tree
Bounding the chromatic number of graphs with no odd hole ★★★
Author(s): Gyarfas
Conjecture There exists a fixed function
so that
for every graph
with no odd hole.
![$ f : {\mathbb N} \rightarrow {\mathbb N} $](/files/tex/e5839c90f2b5ca6fe2f58de668c9549b3ad831bd.png)
![$ \chi(G) \le f(\omega(G)) $](/files/tex/4ecaa216fb961541a2aa91c99df9d018ca9e5597.png)
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
Keywords: chi-bounded; coloring; induced subgraph; odd hole; perfect graph
![Syndicate content Syndicate content](/misc/feed.png)