cycle


Chords of longest cycles ★★★

Author(s): Thomassen

Conjecture   If $ G $ is a 3-connected graph, every longest cycle in $ G $ has a chord.

Keywords: chord; connectivity; cycle

What is the smallest number of disjoint spanning trees made a graph Hamiltonian ★★

Author(s): Goldengorin

We are given a complete simple undirected weighted graph $ G_1=(V,E) $ and its first arbitrary shortest spanning tree $ T_1=(V,E_1) $. We define the next graph $ G_2=(V,E\setminus E_1) $ and find on $ G_2 $ the second arbitrary shortest spanning tree $ T_2=(V,E_2) $. We continue similarly by finding $ T_3=(V,E_3) $ on $ G_3=(V,E\setminus \cup_{i=1}^{2}E_i) $, etc. Let k be the smallest number of disjoint shortest spanning trees as defined above and let $ T^{k}=(V,\cup_{i=1}^{k}E_i) $ be the graph obtained as union of all $ k $ disjoint trees.

Question 1. What is the smallest number of disjoint spanning trees creates a graph $ T^{k} $ containing a Hamiltonian path.

Question 2. What is the smallest number of disjoint spanning trees creates a graph $ T^{k} $ containing a shortest Hamiltonian path?

Questions 3 and 4. Replace in questions 1 and 2 a shortest spanning tree by a 1-tree. What is the smallest number of disjoint 1-trees creates a Hamiltonian graph? What is the smallest number of disjoint 1-trees creates a graph containing a shortest Hamiltonian cycle?

Keywords: 1-trees; cycle; Hamitonian path; spanning trees

Bigger cycles in cubic graphs ★★

Author(s):

Problem   Let $ G $ be a cyclically 4-edge-connected cubic graph and let $ C $ be a cycle of $ G $. Must there exist a cycle $ C' \neq C $ so that $ V(C) \subseteq V(C') $?

Keywords: cubic; cycle

Antichains in the cycle continuous order ★★

Author(s): DeVos

If $ G $,$ H $ are graphs, a function $ f : E(G) \rightarrow E(H) $ is called cycle-continuous if the pre-image of every element of the (binary) cycle space of $ H $ is a member of the cycle space of $ G $.

Problem   Does there exist an infinite set of graphs $ \{G_1,G_2,\ldots \} $ so that there is no cycle continuous mapping between $ G_i $ and $ G_j $ whenever $ i \neq j $ ?

Keywords: antichain; cycle; poset

Hamiltonian paths and cycles in vertex transitive graphs ★★★

Author(s): Lovasz

Problem   Does every connected vertex-transitive graph have a Hamiltonian path?

Keywords: cycle; hamiltonian; path; vertex-transitive

Decomposing eulerian graphs ★★★

Author(s):

Conjecture   If $ G $ is a 6-edge-connected Eulerian graph and $ P $ is a 2-transition system for $ G $, then $ (G,P) $ has a compaible decomposition.

Keywords: cover; cycle; Eulerian

Faithful cycle covers ★★★

Author(s): Seymour

Conjecture   If $ G = (V,E) $ is a graph, $ p : E \rightarrow {\mathbb Z} $ is admissable, and $ p(e) $ is even for every $ e \in E(G) $, then $ (G,p) $ has a faithful cover.

Keywords: cover; cycle

(m,n)-cycle covers ★★★

Author(s): Celmins; Preissmann

Conjecture   Every bridgeless graph has a (5,2)-cycle-cover.

Keywords: cover; cycle

The circular embedding conjecture ★★★

Author(s): Haggard

Conjecture   Every 2-connected graph may be embedded in a surface so that the boundary of each face is a cycle.

Keywords: cover; cycle

Cycle double cover conjecture ★★★★

Author(s): Seymour; Szekeres

Conjecture   For every graph with no bridge, there is a list of cycles so that every edge is contained in exactly two.

Keywords: cover; cycle

Syndicate content