![](/files/happy5.png)
Recent Activity
Monochromatic vertex colorings inherited from Perfect Matchings ★★★
Author(s):
![$ n $](/files/tex/ec63d7020a64c039d5f6703b8fa3ab7393358b5b.png)
![$ d $](/files/tex/aeba4a4076fc495e8b5df04d874f2911a838883a.png)
![$ n $](/files/tex/ec63d7020a64c039d5f6703b8fa3ab7393358b5b.png)
![$ d $](/files/tex/aeba4a4076fc495e8b5df04d874f2911a838883a.png)
![$ d $](/files/tex/aeba4a4076fc495e8b5df04d874f2911a838883a.png)
Keywords:
Cycle Double Covers Containing Predefined 2-Regular Subgraphs ★★★
Author(s): Arthur; Hoffmann-Ostenhof
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ 2 $](/files/tex/5271e36bb1c040e0f14061d89cd97d0c86d4e06f.png)
![$ S $](/files/tex/d2b76a0ee5465d3e3ecc846c8e3d632edd8b2bbf.png)
![$ 2 $](/files/tex/5271e36bb1c040e0f14061d89cd97d0c86d4e06f.png)
![$ G-E(S) $](/files/tex/f65af23afc4481cc9a13687d7a6d12108bda7714.png)
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ S $](/files/tex/d2b76a0ee5465d3e3ecc846c8e3d632edd8b2bbf.png)
![$ S $](/files/tex/d2b76a0ee5465d3e3ecc846c8e3d632edd8b2bbf.png)
Keywords:
Monochromatic reachability in arc-colored digraphs ★★★
Author(s): Sands; Sauer; Woodrow
![$ k $](/files/tex/c450c3185f7285cfa0b88d3a903c54f7df601201.png)
![$ f(k) $](/files/tex/e055b3867e7cb3cc4b2f50739eedda7657999214.png)
![$ D $](/files/tex/b8653a25aff72e3dacd3642492c24c2241f0058c.png)
![$ k $](/files/tex/c450c3185f7285cfa0b88d3a903c54f7df601201.png)
![$ D $](/files/tex/b8653a25aff72e3dacd3642492c24c2241f0058c.png)
![$ S $](/files/tex/d2b76a0ee5465d3e3ecc846c8e3d632edd8b2bbf.png)
![$ f(k) $](/files/tex/e055b3867e7cb3cc4b2f50739eedda7657999214.png)
![$ S $](/files/tex/d2b76a0ee5465d3e3ecc846c8e3d632edd8b2bbf.png)
Keywords:
3-Decomposition Conjecture ★★★
Author(s): Arthur; Hoffmann-Ostenhof
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
Keywords: cubic graph
Which outer reloids are equal to inner ones ★★
Author(s): Porton
Warning: This formulation is vague (not exact).
![$ \{f\in\mathsf{FCD} \mid (\mathsf{RLD})_{\mathrm{in}} f=(\mathsf{RLD})_{\mathrm{out}} f\} $](/files/tex/34d9c3297cb0be1b9acecdb9c1e6f77c599cfc91.png)
The problem seems rather difficult.
Keywords:
A diagram about funcoids and reloids ★★
Author(s): Porton
Define for posets with order :
;
.
Note that the above is a generalization of monotone Galois connections (with and
replaced with suprema and infima).
Then we have the following diagram:
What is at the node "other" in the diagram is unknown.
![$ \lambda f\in\mathsf{FCD}: \top $](/files/tex/4a511edece8921fab6426695d3451efc024273a5.png)
![$ \Phi_{\ast} $](/files/tex/c26f0d43856d263f335939666a99f483ffd09da8.png)
![$ \Phi^{\ast} $](/files/tex/cf6796f6de9023eb4c0ae3e69b8900a93e53fc6b.png)
![$ \Phi_{\ast} $](/files/tex/c26f0d43856d263f335939666a99f483ffd09da8.png)
![$ \Phi^{\ast} $](/files/tex/cf6796f6de9023eb4c0ae3e69b8900a93e53fc6b.png)
Keywords: Galois connections
Outward reloid of composition vs composition of outward reloids ★★
Author(s): Porton
![$ f $](/files/tex/43374150a8a220f67049937b9790b7d28eb17fb9.png)
![$ g $](/files/tex/4239ee4145983e1d8ad375f0606cc7140bce36a3.png)
![$$(\mathsf{RLD})_{\mathrm{out}}(g\circ f)\sqsupseteq(\mathsf{RLD})_{\mathrm{out}}g\circ(\mathsf{RLD})_{\mathrm{out}}f.$$](/files/tex/84f69b164792549ff2f890d3c9dfe23addb9c1ac.png)
Keywords: outward reloid
Sum of prime and semiprime conjecture ★★
Author(s): Geoffrey Marnell
![$ 10 $](/files/tex/f9664c0e5fcffbbe88ed551c02b9275233d8f6b4.png)
A funcoid related to directed topological spaces ★★
Author(s): Porton
![$ R $](/files/tex/201b5ff8bf9045c34a583adc2741b00adf1fd14c.png)
![$ [-\infty,+\infty] = \mathbb{R}\cup\{-\infty,+\infty\} $](/files/tex/3252019c60a83f00ff396d823dbff8040639f409.png)
![$ \geq $](/files/tex/45f96d07de2ad307ec6b9d5fbad7c02d93d9eaf2.png)
![$ R\sqcap^{\mathsf{FCD}}\mathord{\geq} $](/files/tex/5521c999ae08fc16a7a797a3fd66316435ad7aff.png)
![$ \langle R\sqcap^{\mathsf{FCD}}\mathord{\geq}\rangle \{x\} $](/files/tex/4a22ece277f13be752937ec312efed1484d5d2b8.png)
![$ x\in[-\infty,+\infty] $](/files/tex/4e57a21194d8d5a659e259a111ed13a9c23b52a1.png)
If proved true, the conjecture then can be generalized to a wider class of posets.
Keywords:
Infinite distributivity of meet over join for a principal funcoid ★★
Author(s): Porton
![$ f \sqcap \bigsqcup S = \bigsqcup \langle f \sqcap \rangle^{\ast} S $](/files/tex/0a7e06f88b6cd4667f7fa4b6f670b57cfa795155.png)
![$ f $](/files/tex/43374150a8a220f67049937b9790b7d28eb17fb9.png)
![$ S $](/files/tex/d2b76a0ee5465d3e3ecc846c8e3d632edd8b2bbf.png)
Keywords: distributivity; principal funcoid
Weak saturation of the cube in the clique ★
Determine .
Keywords: bootstrap percolation; hypercube; Weak saturation
Convex Equipartitions with Extreme Perimeter ★★
Author(s): Nandakumar
To divide a given 2D convex region C into a specified number n of convex pieces all of equal area (perimeters could be different) such that the total perimeter of pieces is (1) maximized (2) minimized.
Remark: It appears maximizing the total perimeter is the easier problem.
Keywords: convex equipartition
Turán Problem for $10$-Cycles in the Hypercube ★★
Author(s): Erdos
![$ C_{10} $](/files/tex/11903dbe89daae659b28a8bead9b43cae2995c3d.png)
Keywords: cycles; extremal combinatorics; hypercube
Extremal $4$-Neighbour Bootstrap Percolation in the Hypercube ★★
![$ 4 $](/files/tex/1f1498726bb4b7754ca36de46c0ccdd09136d115.png)
Keywords: bootstrap percolation; extremal combinatorics; hypercube; percolation
Saturation in the Hypercube ★★
Author(s): Morrison; Noel; Scott
![$ 2\ell $](/files/tex/e6160c4357fdf2ec5854a3cc78837f8a67caa5c5.png)
![$ d $](/files/tex/aeba4a4076fc495e8b5df04d874f2911a838883a.png)
Keywords: cycles; hypercube; minimum saturation; saturation
Cycles in Graphs of Large Chromatic Number ★★
Author(s): Brewster; McGuinness; Moore; Noel
![$ \chi(G)>k $](/files/tex/84d787e716a616f1d9b6d33aea0d9f0777cb1df3.png)
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ \frac{(k+1)(k-1)!}{2} $](/files/tex/2576c24e6815c0bf97ab23f18ad24cf5421aeac4.png)
![$ 0\bmod k $](/files/tex/ef4d29155ecd56ddbfea81561d000d0e5823edb7.png)
Keywords: chromatic number; cycles
The Double Cap Conjecture ★★
Author(s): Kalai
![$ \mathbb{R}^n $](/files/tex/2010c953180b3521ec2f66d10e1f40ec71d44574.png)
![$ \pi/4 $](/files/tex/01608ea3b80f85b77096d16610a43e184782386c.png)
Keywords: combinatorial geometry; independent set; orthogonality; projective plane; sphere
Circular flow numbers of $r$-graphs ★★
Author(s): Steffen
A nowhere-zero -flow
on
is an orientation
of
together with a function
from the edge set of
into the real numbers such that
, for all
, and
.
A -regular graph
is a
-graph if
for every
with
odd.
![$ t > 1 $](/files/tex/13690a4a2acccbf67e32711965c98ee5b60756eb.png)
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ (2t+1) $](/files/tex/da4d60d92c98256f762bb69398437f3914ef0fa6.png)
![$ F_c(G) \leq 2 + \frac{2}{t} $](/files/tex/35f6f6ba01e2a1f8f2c867888c086731d735cc74.png)
Keywords: flow conjectures; nowhere-zero flows
Circular flow number of regular class 1 graphs ★★
Author(s): Steffen
A nowhere-zero -flow
on
is an orientation
of
together with a function
from the edge set of
into the real numbers such that
, for all
, and
. The circular flow number of
is inf
has a nowhere-zero
-flow
, and it is denoted by
.
A graph with maximum vertex degree is a class 1 graph if its edge chromatic number is
.
![$ t \geq 1 $](/files/tex/f9082ade09146d7aa9994735ba4ad788d0583b0c.png)
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ (2t+1) $](/files/tex/da4d60d92c98256f762bb69398437f3914ef0fa6.png)
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ F_c(G) \leq 2 + \frac{2}{t} $](/files/tex/35f6f6ba01e2a1f8f2c867888c086731d735cc74.png)
Chromatic number of associahedron ★★
Author(s): Fabila-Monroy; Flores-Penaloza; Huemer; Hurtado; Urrutia; Wood