Open Problem Garden
Help
About
Contact
login/create account
Home
Open Problems
Title
Author(s)
Imp.¹
Rec.²
Area » Topic » Subtopic
Posted by
Cycle Double Covers Containing Predefined 2-Regular Subgraphs
Arthur
;
Hoffmann-Ostenhof
✭✭✭
0
Graph Theory
arthur
Monochromatic vertex colorings inherited from Perfect Matchings
✭✭✭
1
Graph Theory
Mario Krenn
Sidorenko's Conjecture
Sidorenko
✭✭✭
0
Graph Theory
Jon Noel
3-Edge-Coloring Conjecture
Arthur
;
Hoffmann-Ostenhof
✭✭✭
1
Graph Theory
arthur
Chromatic number of $\frac{3}{3}$-power of graph
✭✭
0
Graph Theory
Iradmusa
57-regular Moore graph?
Hoffman
;
Singleton
✭✭✭
0
Graph Theory
»
Algebraic G.T.
mdevos
Hamiltonian paths and cycles in vertex transitive graphs
Lovasz
✭✭✭
0
Graph Theory
»
Algebraic G.T.
mdevos
Triangle free strongly regular graphs
✭✭✭
0
Graph Theory
»
Algebraic G.T.
mdevos
Half-integral flow polynomial values
Mohar
✭✭
0
Graph Theory
»
Algebraic G.T.
mohar
Ramsey properties of Cayley graphs
Alon
✭✭✭
0
Graph Theory
»
Algebraic G.T.
mdevos
Laplacian Degrees of a Graph
Guo
✭✭
0
Graph Theory
»
Algebraic G.T.
Robert Samal
Cores of strongly regular graphs
Cameron
;
Kazanidis
✭✭✭
0
Graph Theory
»
Algebraic G.T.
mdevos
Does the chromatic symmetric function distinguish between trees?
Stanley
✭✭
0
Graph Theory
»
Algebraic G.T.
mdevos
Graham's conjecture on tree reconstruction
Graham
✭✭
0
Graph Theory
»
Basic G.T.
mdevos
Nearly spanning regular subgraphs
Alon
;
Mubayi
✭✭✭
0
Graph Theory
»
Basic G.T.
mdevos
Complete bipartite subgraphs of perfect graphs
Fox
✭✭
0
Graph Theory
»
Basic G.T.
mdevos
Asymptotic Distribution of Form of Polyhedra
Rüdinger
✭✭
0
Graph Theory
»
Basic G.T.
andreasruedinger
Domination in cubic graphs
Reed
✭✭
0
Graph Theory
»
Basic G.T.
mdevos
Friendly partitions
DeVos
✭✭
0
Graph Theory
»
Basic G.T.
mdevos
Subgraph of large average degree and large girth.
Thomassen
✭✭
0
Graph Theory
»
Basic G.T.
fhavet
Almost all non-Hamiltonian 3-regular graphs are 1-connected
Haythorpe
✭✭
1
Graph Theory
»
Basic G.T.
mhaythorpe
Partitioning edge-connectivity
DeVos
✭✭
0
Graph Theory
»
Basic G.T.
»
Connectivity
mdevos
Kriesell's Conjecture
Kriesell
✭✭
0
Graph Theory
»
Basic G.T.
»
Connectivity
Jon Noel
Cycle double cover conjecture
Seymour
;
Szekeres
✭✭✭✭
0
Graph Theory
»
Basic G.T.
»
Cycles
mdevos
The circular embedding conjecture
Haggard
✭✭✭
0
Graph Theory
»
Basic G.T.
»
Cycles
mdevos
(m,n)-cycle covers
Celmins
;
Preissmann
✭✭✭
0
Graph Theory
»
Basic G.T.
»
Cycles
mdevos
Faithful cycle covers
Seymour
✭✭✭
0
Graph Theory
»
Basic G.T.
»
Cycles
mdevos
Decomposing eulerian graphs
✭✭✭
0
Graph Theory
»
Basic G.T.
»
Cycles
mdevos
Barnette's Conjecture
Barnette
✭✭✭
0
Graph Theory
»
Basic G.T.
»
Cycles
Robert Samal
r-regular graphs are not uniquely hamiltonian.
Sheehan
✭✭✭
0
Graph Theory
»
Basic G.T.
»
Cycles
Robert Samal
Hamiltonian cycles in line graphs
Thomassen
✭✭✭
0
Graph Theory
»
Basic G.T.
»
Cycles
Robert Samal
Geodesic cycles and Tutte's Theorem
Georgakopoulos
;
Sprüssel
✭✭
1
Graph Theory
»
Basic G.T.
»
Cycles
Agelos
Jones' conjecture
Kloks
;
Lee
;
Liu
✭✭
0
Graph Theory
»
Basic G.T.
»
Cycles
cmlee
Chords of longest cycles
Thomassen
✭✭✭
0
Graph Theory
»
Basic G.T.
»
Cycles
mdevos
Hamiltonicity of Cayley graphs
Rapaport-Strasser
✭✭✭
1
Graph Theory
»
Basic G.T.
»
Cycles
tchow
Strong 5-cycle double cover conjecture
Arthur
;
Hoffmann-Ostenhof
✭✭✭
1
Graph Theory
»
Basic G.T.
»
Cycles
arthur
Decomposing an eulerian graph into cycles.
Hajós
✭✭
0
Graph Theory
»
Basic G.T.
»
Cycles
fhavet
Decomposing an eulerian graph into cycles with no two consecutives edges on a prescribed eulerian tour.
Sabidussi
✭✭
0
Graph Theory
»
Basic G.T.
»
Cycles
fhavet
Every prism over a 3-connected planar graph is hamiltonian.
Kaiser
;
Král
;
Rosenfeld
;
Ryjácek
;
Voss
✭✭
0
Graph Theory
»
Basic G.T.
»
Cycles
fhavet
4-connected graphs are not uniquely hamiltonian
Fleischner
✭✭
0
Graph Theory
»
Basic G.T.
»
Cycles
fhavet
Hamilton decomposition of prisms over 3-connected cubic planar graphs
Alspach
;
Rosenfeld
✭✭
0
Graph Theory
»
Basic G.T.
»
Cycles
fhavet
The Berge-Fulkerson conjecture
Berge
;
Fulkerson
✭✭✭✭
0
Graph Theory
»
Basic G.T.
»
Matchings
mdevos
The intersection of two perfect matchings
Macajova
;
Skoviera
✭✭
0
Graph Theory
»
Basic G.T.
»
Matchings
mdevos
Matchings extend to Hamiltonian cycles in hypercubes
Ruskey
;
Savage
✭✭
1
Graph Theory
»
Basic G.T.
»
Matchings
Jirka
Random stable roommates
Mertens
✭✭
0
Graph Theory
»
Basic G.T.
»
Matchings
mdevos
Highly connected graphs with no K_n minor
Thomas
✭✭✭
0
Graph Theory
»
Basic G.T.
»
Minors
mdevos
Jorgensen's Conjecture
Jorgensen
✭✭✭
0
Graph Theory
»
Basic G.T.
»
Minors
mdevos
Seagull problem
Seymour
✭✭✭
0
Graph Theory
»
Basic G.T.
»
Minors
mdevos
Forcing a $K_6$-minor
Barát
;
Joret
;
Wood
✭✭
0
Graph Theory
»
Basic G.T.
»
Minors
David Wood
Forcing a 2-regular minor
Reed
;
Wood
✭✭
1
Graph Theory
»
Basic G.T.
»
Minors
David Wood
« first
‹ previous
…
5
6
7
8
9
10
11
12
13
…
next ›
last »
Navigate
Subject
Algebra
(295)
Analysis
(5)
Combinatorics
(35)
Geometry
(29)
Graph Theory
(228)
Group Theory
(5)
Logic
(10)
Number Theory
(49)
PDEs
(0)
Probability
(1)
Theoretical Comp. Sci.
(13)
Topology
(40)
Unsorted
(1)
Author index
Keyword index
more
Recent Activity
Nowhere-zero flows
Shuffle-Exchange Conjecture
Algebra
Seagull problem
Solution to the Lonely Runner Conjecture
more