Solved problems

TitleAuthor(s)sort iconImp.¹Rec.²Area » Topic » SubtopicPosted by
Decomposing the truncated octahedron into parallelepipeds1Geometry » Polytopesmdevos
Bigger cycles in cubic graphs✭✭0Graph Theory » Basic G.T. » Cyclesmdevos
On Gersgorin Theorem✭✭0AlgebraMiwa Lin
Inequality of complex numbers✭✭1Analysisfeanor
spanning trees✭✭1Graph Theoryakhodkar
Oakley sunglasses can successfully secure their sight will very likely be common-sense✭✭0Analysishaumiki
Steinberg's conjecture✭✭✭✭0Graph Theory » Coloring » Vertex coloringfhavet
Choice number of complete multipartite graphs with parts of size 41Graph Theory » Coloring » Vertex coloringJon Noel
DIS-PROOF OF BEALS CONJECTURE✭✭✭0Number Theory » Additive N.T.lalitha
Total Domination number of a hypercubeAdel P. Kazemi✭✭✭0Graph Theory » Basic G.T.Adel P. Kazemi
Total Dominator Chromatic Number of a HypercubeAdel P. Kazemi✭✭0Graph Theory » Coloring » Vertex coloringAdel P. Kazemi
Nonrepetitive colourings of planar graphsAlon N.; Grytczuk J.; Hałuszczak M.; Riordan O.✭✭0Graph Theory » Coloring » Vertex coloringDavid Wood
Bounded colorings for planar graphsAlon; Ding; Oporowski; Vertigan✭✭1Graph Theory » Topological G.T. » Coloringmdevos
Alon-Saks-Seymour ConjectureAlon; Saks; Seymour✭✭✭0Graph Theory » Coloring » Vertex coloringmdevos
Good edge labeling and girthBode-Farzad-Theis✭✭0Graph Theory » Coloring » LabelingDOT
Monochromatic reachability in edge-colored tournamentsErdos✭✭✭0Graph Theory » Directed Graphs » Tournamentsmdevos
Middle levels problemErdos✭✭0Graph Theory » Basic G.T. » Cyclestchow
Fowler's Conjecture on eigenvalues of (3,6)-polyhedraFowler✭✭0Graph Theory » Algebraic G.T.Robert Samal
The sum of the two largest eigenvaluesGernert✭✭0Graph Theory » Algebraic G.T.mdevos
(2 + epsilon)-flow conjectureGoddyn; Seymour✭✭✭0Graph Theory » Coloring » Nowhere-zero flowsmdevos
Bounding the chromatic number of graphs with no odd holeGyarfas✭✭✭0Graph Theory » Coloring » Vertex coloringmdevos
Hall-Paige conjectureHall; Paige✭✭✭0Group Theorymdevos
Does every subcubic triangle-free graph have fractional chromatic number at most 14/5?Heckman; Thomas0Graph Theory » Coloring » Vertex coloringAndrew King
Hirsch ConjectureHirsch✭✭✭0Geometry » PolytopesRobert Samal
Special MKimberling✭✭1Number Theoryvprusso
Hitting every large maximal clique with a stable setKing; Rabern✭✭1Graph TheoryAndrew King
Star height problemLawrence Eggan C.✭✭0Theoretical Comp. Sci.porton
Exponentially many perfect matchings in cubic graphsLovasz; Plummer✭✭✭0Graph Theory » Basic G.T. » Matchingsmdevos
Petersen graph conjectureMkrtchyan; Petrosyan1Graph Theory » Basic G.T. » Matchingsvahanmkrtchyan2002
Matching polynomials of vertex transitive graphsMohar✭✭0Graph Theory » Algebraic G.T.Robert Samal
Complexity of QBF(Bounded Treewidth)Moshe Y. Vardi✭✭0Logic » Finite Model Theorymyvardi
Ohba's ConjectureOhba✭✭1Graph Theory » Coloring » Vertex coloringJon Noel
5-coloring graphs with small crossing & clique numbersOporowski; Zhao✭✭1Graph Theory » Topological G.T. » Coloringmdevos
Straight line representation of planar linear hypergraphsOssona de Mendez; de Fraysseix✭✭0Graph Theory » Topological G.T. » Drawingstaxipom
Geometric Hales-Jewett TheoremPor; Wood✭✭0GeometryDavid Wood
Intersection of complete funcoidsPorton✭✭0Topologyporton
Monovalued reloid is a restricted functionPorton✭✭0Topologyporton
Distributivity of composition over union of reloidsPorton✭✭0Topologyporton
Funcoid corresponding to inward reloidPorton✭✭0Topologyporton
Distributivity of outward reloid over composition of funcoidsPorton✭✭0Topologyporton
Outward reloid corresponding to a funcoid corresponding to convex reloidPorton✭✭0Topologyporton
Inward reloid corresponding to a funcoid corresponding to convex reloidPorton✭✭0Topologyporton
Distributivity of union of funcoids corresponding to reloidsPorton✭✭0Topologyporton
Reloid corresponding to funcoid is between outward and inward reloidPorton✭✭0Topologyporton
Composition of atomic reloidsPorton✭✭0Topologyporton
Atomic reloids are monovaluedPorton✭✭0Topologyporton
Monovalued reloid restricted to atomic filterPorton✭✭0Topologyporton
Do filters complementive to a given filter form a complete lattice?Porton✭✭0Unsortedporton
Pseudodifference of filter objectsPorton✭✭0Unsortedporton
Co-separability of filter objectsPorton✭✭0Unsortedporton