Random

Which compact boundaryless 3-manifolds embed smoothly in the 4-sphere? ★★★

Author(s): Kirby

Problem   Determine a computable set of invariants that allow one to determine, given a compact boundaryless 3-manifold, whether or not it embeds smoothly in the 4-sphere. This should include a constructive procedure to find an embedding if the manifold is embeddable.

Keywords: 3-manifold; 4-sphere; embedding

Finite entailment of Positive Horn logic ★★

Author(s): Martin

Question   Positive Horn logic (pH) is the fragment of FO involving exactly $ \exists, \forall, \wedge, = $. Does the fragment $ pH \wedge \neg pH $ have the finite model property?

Keywords: entailment; finite satisfiability; horn logic

The intersection of two perfect matchings ★★

Author(s): Macajova; Skoviera

Conjecture   Every bridgeless cubic graph has two perfect matchings $ M_1 $, $ M_2 $ so that $ M_1 \cap M_2 $ does not contain an odd edge-cut.

Keywords: cubic; nowhere-zero flow; perfect matching

Decomposing an eulerian graph into cycles. ★★

Author(s): Hajós

Conjecture   Every simple eulerian graph on $ n $ vertices can be decomposed into at most $ \frac{1}{2}(n-1) $ cycles.

Keywords:

Graham's conjecture on tree reconstruction ★★

Author(s): Graham

Problem   for every graph $ G $, we let $ L(G) $ denote the line graph of $ G $. Given that $ G $ is a tree, can we determine it from the integer sequence $ |V(G)|, |V(L(G))|, |V(L(L(G)))|, \ldots $?

Keywords: reconstruction; tree

Another conjecture about reloids and funcoids ★★

Author(s): Porton

Definition   $ \square f = \bigcap^{\mathsf{RLD}} \mathrm{up}^{\Gamma (\operatorname{Src} f ; \operatorname{Dst} f)} f $ for reloid $ f $.
Conjecture   $ (\mathsf{RLD})_{\Gamma} f = \square (\mathsf{RLD})_{\mathrm{in}} f $ for every funcoid $ f $.

Note: it is known that $ (\mathsf{RLD})_{\Gamma} f \ne \square (\mathsf{RLD})_{\mathrm{out}} f $ (see below mentioned online article).

Keywords:

Rainbow AP(4) in an almost equinumerous coloring ★★

Author(s): Conlon

Problem   Do 4-colorings of $ \mathbb{Z}_{p} $, for $ p $ a large prime, always contain a rainbow $ AP(4) $ if each of the color classes is of size of either $ \lfloor p/4\rfloor $ or $ \lceil p/4\rceil $?

Keywords: arithmetic progression; rainbow

Imbalance conjecture ★★

Author(s): Kozerenko

Conjecture   Suppose that for all edges $ e\in E(G) $ we have $ imb(e)>0 $. Then $ M_{G} $ is graphic.

Keywords: edge imbalance; graphic sequences

Diagonal Ramsey numbers ★★★★

Author(s): Erdos

Let $ R(k,k) $ denote the $ k^{th} $ diagonal Ramsey number.

Conjecture   $ \lim_{k \rightarrow \infty} R(k,k) ^{\frac{1}{k}} $ exists.
Problem   Determine the limit in the above conjecture (assuming it exists).

Keywords: Ramsey number

Infinite distributivity of meet over join for a principal funcoid ★★

Author(s): Porton

Conjecture   $ f \sqcap \bigsqcup S = \bigsqcup \langle f \sqcap \rangle^{\ast} S $ for principal funcoid $ f $ and a set $ S $ of funcoids of appropriate sources and destinations.

Keywords: distributivity; principal funcoid

Matchings extend to Hamiltonian cycles in hypercubes ★★

Author(s): Ruskey; Savage

Question   Does every matching of hypercube extend to a Hamiltonian cycle?

Keywords: Hamiltonian cycle; hypercube; matching

A discrete iteration related to Pierce expansions ★★

Author(s): Shallit

Conjecture   Let $ a > b > 0 $ be integers. Set $ b_1 = b $ and $ b_{i+1} = {a \bmod {b_i}} $ for $ i \geq 0 $. Eventually we have $ b_{n+1} = 0 $; put $ P(a,b) = n $.

Example: $ P(35, 22) = 7 $, since $ b_1 = 22 $, $ b_2 = 13 $, $ b_3 = 9 $, $ b_4 = 8 $, $ b_5 = 3 $, $ b_6 = 2 $, $ b_7 = 1 $, $ b_8 = 0 $.

Prove or disprove: $ P(a,b) = O((\log a)^2) $.

Keywords: Pierce expansions

Hamiltonian cycles in line graphs of infinite graphs ★★

Author(s): Georgakopoulos

Conjecture  
    \item If $ G $ is a 4-edge-connected locally finite graph, then its line graph is hamiltonian. \item If the line graph $ L(G) $ of a locally finite graph $ G $ is 4-connected, then $ L(G) $ is hamiltonian.

Keywords: hamiltonian; infinite graph; line graphs

Do any three longest paths in a connected graph have a vertex in common? ★★

Author(s): Gallai

Conjecture   Do any three longest paths in a connected graph have a vertex in common?

Keywords:

Are almost all graphs determined by their spectrum? ★★★

Author(s):

Problem   Are almost all graphs uniquely determined by the spectrum of their adjacency matrix?

Keywords: cospectral; graph invariant; spectrum

The Bermond-Thomassen Conjecture ★★

Author(s): Bermond; Thomassen

Conjecture   For every positive integer $ k $, every digraph with minimum out-degree at least $ 2k-1 $ contains $ k $ disjoint cycles.

Keywords: cycles

Fat 4-polytopes ★★★

Author(s): Eppstein; Kuperberg; Ziegler

The fatness of a 4-polytope $ P $ is defined to be $ (f_1 + f_2)/(f_0 + f_3) $ where $ f_i $ is the number of faces of $ P $ of dimension $ i $.

Question   Does there exist a fixed constant $ c $ so that every convex 4-polytope has fatness at most $ c $?

Keywords: f-vector; polytope

A funcoid related to directed topological spaces ★★

Author(s): Porton

Conjecture   Let $ R $ be the complete funcoid corresponding to the usual topology on extended real line $ [-\infty,+\infty] = \mathbb{R}\cup\{-\infty,+\infty\} $. Let $ \geq $ be the order on this set. Then $ R\sqcap^{\mathsf{FCD}}\mathord{\geq} $ is a complete funcoid.
Proposition   It is easy to prove that $ \langle R\sqcap^{\mathsf{FCD}}\mathord{\geq}\rangle \{x\} $ is the infinitely small right neighborhood filter of point $ x\in[-\infty,+\infty] $.

If proved true, the conjecture then can be generalized to a wider class of posets.

Keywords:

trace inequality ★★

Author(s):

Let $ A,B $ be positive semidefinite, by Jensen's inequality, it is easy to see $ [tr(A^s+B^s)]^{\frac{1}{s}}\leq [tr(A^r+B^r)]^{\frac{1}{r}} $, whenever $ s>r>0 $.

What about the $ tr(A^s+B^s)^{\frac{1}{s}}\leq tr(A^r+B^r)^{\frac{1}{r}} $, is it still valid?

Keywords:

Long directed cycles in diregular digraphs ★★★

Author(s): Jackson

Conjecture   Every strong oriented graph in which each vertex has indegree and outdegree at least $ d $ contains a directed cycle of length at least $ 2d+1 $.

Keywords:

Are there infinite number of Mersenne Primes? ★★★★

Author(s):

Conjecture   A Mersenne prime is a Mersenne number \[ M_n  = 2^p  - 1 \] that is prime.

Are there infinite number of Mersenne Primes?

Keywords: Mersenne number; Mersenne prime

Domination in cubic graphs ★★

Author(s): Reed

Problem   Does every 3-connected cubic graph $ G $ satisfy $ \gamma(G) \le \lceil |G|/3 \rceil $ ?

Keywords: cubic graph; domination

Outer reloid of restricted funcoid ★★

Author(s): Porton

Question   $ ( \mathsf{RLD})_{\mathrm{out}} (f \cap^{\mathsf{FCD}} ( \mathcal{A} \times^{\mathsf{FCD}} \mathcal{B})) = (( \mathsf{RLD})_{\mathrm{out}} f) \cap^{\mathsf{RLD}} ( \mathcal{A} \times^{\mathsf{RLD}} \mathcal{B}) $ for every filter objects $ \mathcal{A} $ and $ \mathcal{B} $ and a funcoid $ f\in\mathsf{FCD}(\mathrm{Src}\,f; \mathrm{Dst}\,f) $?

Keywords: direct product of filters; outer reloid

Erdős-Posa property for long directed cycles ★★

Author(s): Havet; Maia

Conjecture   Let $ \ell \geq 2 $ be an integer. For every integer $ n\geq 0 $, there exists an integer $ t_n=t_n(\ell) $ such that for every digraph $ D $, either $ D $ has a $ n $ pairwise-disjoint directed cycles of length at least $ \ell $, or there exists a set $ T $ of at most $ t_n $ vertices such that $ D-T $ has no directed cycles of length at least $ \ell $.

Keywords:

Complexity of square-root sum ★★

Author(s): Goemans

Question   What is the complexity of the following problem?

Given $ a_1,\dots,a_n; k $, determine whether or not $  \sum_i \sqrt{a_i} \leq k.  $

Keywords: semi-definite programming

Monochromatic empty triangles ★★★

Author(s):

If $ X \subseteq {\mathbb R}^2 $ is a finite set of points which is 2-colored, an empty triangle is a set $ T \subseteq X $ with $ |T|=3 $ so that the convex hull of $ T $ is disjoint from $ X \setminus T $. We say that $ T $ is monochromatic if all points in $ T $ are the same color.

Conjecture   There exists a fixed constant $ c $ with the following property. If $ X \subseteq {\mathbb R}^2 $ is a set of $ n $ points in general position which is 2-colored, then it has $ \ge cn^2 $ monochromatic empty triangles.

Keywords: empty triangle; general position; ramsey theory

Almost all non-Hamiltonian 3-regular graphs are 1-connected ★★

Author(s): Haythorpe

Conjecture   Denote by $ NH(n) $ the number of non-Hamiltonian 3-regular graphs of size $ 2n $, and similarly denote by $ NHB(n) $ the number of non-Hamiltonian 3-regular 1-connected graphs of size $ 2n $.

Is it true that $ \lim\limits_{n \rightarrow \infty} \displaystyle\frac{NHB(n)}{NH(n)} = 1 $?

Keywords: Hamiltonian, Bridge, 3-regular, 1-connected

Hamilton cycle in small d-diregular graphs ★★

Author(s): Jackson

An directed graph is $ k $-diregular if every vertex has indegree and outdegree at least $ k $.

Conjecture   For $ d >2 $, every $ d $-diregular oriented graph on at most $ 4d+1 $ vertices has a Hamilton cycle.

Keywords:

Aharoni-Berger conjecture ★★★

Author(s): Aharoni; Berger

Conjecture   If $ M_1,\ldots,M_k $ are matroids on $ E $ and $ \sum_{i=1}^k rk_{M_i}(X_i) \ge \ell (k-1) $ for every partition $ \{X_1,\ldots,X_k\} $ of $ E $, then there exists $ X \subseteq E $ with $ |X| = \ell $ which is independent in every $ M_i $.

Keywords: independent set; matroid; partition

Degenerate colorings of planar graphs ★★★

Author(s): Borodin

A graph $ G $ is $ k $-degenerate if every subgraph of $ G $ has a vertex of degree $ \le k $.

Conjecture   Every simple planar graph has a 5-coloring so that for $ 1 \le k \le 4 $, the union of any $ k $ color classes induces a $ (k-1) $-degenerate graph.

Keywords: coloring; degenerate; planar

Decomposing an eulerian graph into cycles with no two consecutives edges on a prescribed eulerian tour. ★★

Author(s): Sabidussi

Conjecture   Let $ G $ be an eulerian graph of minimum degree $ 4 $, and let $ W $ be an eulerian tour of $ G $. Then $ G $ admits a decomposition into cycles none of which contains two consecutive edges of $ W $.

Keywords:

Erdős–Faber–Lovász conjecture ★★★

Author(s): Erdos; Faber; Lovasz

Conjecture   If $ G $ is a simple graph which is the union of $ k $ pairwise edge-disjoint complete graphs, each of which has $ k $ vertices, then the chromatic number of $ G $ is $ k $.

Keywords: chromatic number

Real roots of the flow polynomial ★★

Author(s): Welsh

Conjecture   All real roots of nonzero flow polynomials are at most 4.

Keywords: flow polynomial; nowhere-zero flow

Roller Coaster permutations ★★★

Author(s): Ahmed; Snevily

Let $ S_n $ denote the set of all permutations of $ [n]=\set{1,2,\ldots,n} $. Let $ i(\pi) $ and $ d(\pi) $ denote respectively the number of increasing and the number of decreasing sequences of contiguous numbers in $ \pi $. Let $ X(\pi) $ denote the set of subsequences of $ \pi $ with length at least three. Let $ t(\pi) $ denote $ \sum_{\tau\in X(\pi)}(i(\tau)+d(\tau)) $.

A permutation $ \pi\in S_n $ is called a Roller Coaster permutation if $ t(\pi)=\max_{\tau\in S_n}t(\tau) $. Let $ RC(n) $ be the set of all Roller Coaster permutations in $ S_n $.

Conjecture   For $ n\geq 3 $,
    \item If $ n=2k $, then $ |RC(n)|=4 $. \item If $ n=2k+1 $, then $ |RC(n)|=2^j $ with $ j\leq k+1 $.
Conjecture  (Odd Sum conjecture)   Given $ \pi\in RC(n) $,
    \item If $ n=2k+1 $, then $ \pi_j+\pi_{n-j+1} $ is odd for $ 1\leq j\leq k $. \item If $ n=2k $, then $ \pi_j + \pi_{n-j+1} = 2k+1 $ for all $ 1\leq j\leq k $.

Keywords:

Dividing up the unrestricted partitions ★★

Author(s): David S.; Newman

Begin with the generating function for unrestricted partitions:

(1+x+x^2+...)(1+x^2+x^4+...)(1+x^3+x^6+...)...

Now change some of the plus signs to minus signs. The resulting series will have coefficients congruent, mod 2, to the coefficients of the generating series for unrestricted partitions. I conjecture that the signs may be chosen such that all the coefficients of the series are either 1, -1, or zero.

Keywords: congruence properties; partition

Direct proof of a theorem about compact funcoids ★★

Author(s): Porton

Conjecture   Let $ f $ is a $ T_1 $-separable (the same as $ T_2 $ for symmetric transitive) compact funcoid and $ g $ is a uniform space (reflexive, symmetric, and transitive endoreloid) such that $ ( \mathsf{\tmop{FCD}}) g = f $. Then $ g = \langle f \times f \rangle^{\ast} \Delta $.

The main purpose here is to find a direct proof of this conjecture. It seems that this conjecture can be derived from the well known theorem about existence of exactly one uniformity on a compact set. But that would be what I call an indirect proof, we need a direct proof instead.

The direct proof may be constructed by correcting all errors an omissions in this draft article.

Direct proof could be better because with it we would get a little more general statement like this:

Conjecture   Let $ f $ be a $ T_1 $-separable compact reflexive symmetric funcoid and $ g $ be a reloid such that
    \item $ ( \mathsf{\tmop{FCD}}) g = f $; \item $ g \circ g^{- 1} \sqsubseteq g $.

Then $ g = \langle f \times f \rangle^{\ast} \Delta $.

Keywords: compact space; compact topology; funcoid; reloid; uniform space; uniformity

Antidirected trees in digraphs ★★

Author(s): Addario-Berry; Havet; Linhares Sales; Reed; Thomassé

An antidirected tree is an orientation of a tree in which every vertex has either indegree 0 or outdergree 0.

Conjecture   Let $ D $ be a digraph. If $ |A(D)| > (k-2) |V(D)| $, then $ D $ contains every antidirected tree of order $ k $.

Keywords:

Inverse Galois Problem ★★★★

Author(s): Hilbert

Conjecture   Every finite group is the Galois group of some finite algebraic extension of $ \mathbb Q $.

Keywords:

Drawing disconnected graphs on surfaces ★★

Author(s): DeVos; Mohar; Samal

Conjecture   Let $ G $ be the disjoint union of the graphs $ G_1 $ and $ G_2 $ and let $ \Sigma $ be a surface. Is it true that every optimal drawing of $ G $ on $ \Sigma $ has the property that $ G_1 $ and $ G_2 $ are disjoint?

Keywords: crossing number; surface

Odd incongruent covering systems ★★★

Author(s): Erdos; Selfridge

Conjecture   There is no covering system whose moduli are odd, distinct, and greater than 1.

Keywords: covering system

Algebraic independence of pi and e ★★★

Author(s):

Conjecture   $ \pi $ and $ e $ are algebraically independent

Keywords: algebraic independence

Forcing a $K_6$-minor ★★

Author(s): Barát ; Joret; Wood

Conjecture   Every graph with minimum degree at least 7 contains a $ K_6 $-minor.
Conjecture   Every 7-connected graph contains a $ K_6 $-minor.

Keywords: connectivity; graph minors

Perfect 2-error-correcting codes over arbitrary finite alphabets. ★★

Author(s):

Conjecture   Does there exist a nontrivial perfect 2-error-correcting code over any finite alphabet, other than the ternary Golay code?

Keywords: 2-error-correcting; code; existence; perfect; perfect code

Are there only finite Fermat Primes? ★★★

Author(s):

Conjecture   A Fermat prime is a Fermat number \[ F_n  = 2^{2^n }  + 1 \] that is prime. The only known Fermat primes are F_0 =3,F_1=5,F_2=17,F_3 =257 ,F_4=65537 It is unknown if other fermat primes exist.

Keywords:

Snevily's conjecture ★★★

Author(s): Snevily

Conjecture   Let $ G $ be an abelian group of odd order and let $ A,B \subseteq G $ satisfy $ |A| = |B| = k $. Then the elements of $ A $ and $ B $ may be ordered $ A = \{a_1,\ldots,a_k\} $ and $ B = \{b_1,\ldots,b_k\} $ so that the sums $ a_1+b_1, a_2+b_2 \ldots, a_k + b_k $ are pairwise distinct.

Keywords: addition table; latin square; transversal

Sum of prime and semiprime conjecture ★★

Author(s): Geoffrey Marnell

Conjecture   Every even number greater than $ 10 $ can be represented as the sum of an odd prime number and an odd semiprime .

Keywords: prime; semiprime

Turán Problem for $10$-Cycles in the Hypercube ★★

Author(s): Erdos

Problem   Bound the extremal number of $ C_{10} $ in the hypercube.

Keywords: cycles; extremal combinatorics; hypercube

Jorgensen's Conjecture ★★★

Author(s): Jorgensen

Conjecture   Every 6-connected graph without a $ K_6 $ minor is apex (planar plus one vertex).

Keywords: connectivity; minor

Universal point sets for planar graphs ★★★

Author(s): Mohar

We say that a set $ P \subseteq {\mathbb R}^2 $ is $ n $-universal if every $ n $ vertex planar graph can be drawn in the plane so that each vertex maps to a distinct point in $ P $, and all edges are (non-intersecting) straight line segments.

Question   Does there exist an $ n $-universal set of size $ O(n) $?

Keywords: geometric graph; planar graph; universal set

2-colouring a graph without a monochromatic maximum clique ★★

Author(s): Hoang; McDiarmid

Conjecture   If $ G $ is a non-empty graph containing no induced odd cycle of length at least $ 5 $, then there is a $ 2 $-vertex colouring of $ G $ in which no maximum clique is monochromatic.

Keywords: maximum clique; Partitioning