Are different notions of the crossing number the same? ★★★

Author(s): Pach; Tóth

Problem   Does the following equality hold for every graph $ G $? \[ \text{pair-cr}(G) = \text{cr}(G) \]

The crossing number $ \text{cr}(G) $ of a graph $ G $ is the minimum number of edge crossings in any drawing of $ G $ in the plane. In the pairwise crossing number $ \text{pair-cr}(G) $, we minimize the number of pairs of edges that cross.

Keywords: crossing number; pair-crossing number

Generalised Empty Hexagon Conjecture ★★

Author(s): Wood

Conjecture   For each $ \ell\geq3 $ there is an integer $ f(\ell) $ such that every set of at least $ f(\ell) $ points in the plane contains $ \ell $ collinear points or an empty hexagon.

Keywords: empty hexagon

Large induced forest in a planar graph. ★★

Author(s): Abertson; Berman

Conjecture   Every planar graph on $ n $ verices has an induced forest with at least $ n/2 $ vertices.


Simplexity of the n-cube ★★★


Question   What is the minimum cardinality of a decomposition of the $ n $-cube into $ n $-simplices?

Keywords: cube; decomposition; simplex

Complexity of square-root sum ★★

Author(s): Goemans

Question   What is the complexity of the following problem?

Given $ a_1,\dots,a_n; k $, determine whether or not $  \sum_i \sqrt{a_i} \leq k.  $

Keywords: semi-definite programming

Geodesic cycles and Tutte's Theorem ★★

Author(s): Georgakopoulos; Sprüssel

Problem   If $ G $ is a $ 3 $-connected finite graph, is there an assignment of lengths $ \ell: E(G) \to \mathb R^+ $ to the edges of $ G $, such that every $ \ell $-geodesic cycle is peripheral?

Keywords: cycle space; geodesic cycles; peripheral cycles

A funcoid related to directed topological spaces ★★

Author(s): Porton

Conjecture   Let $ R $ be the complete funcoid corresponding to the usual topology on extended real line $ [-\infty,+\infty] = \mathbb{R}\cup\{-\infty,+\infty\} $. Let $ \geq $ be the order on this set. Then $ R\sqcap^{\mathsf{FCD}}\mathord{\geq} $ is a complete funcoid.
Proposition   It is easy to prove that $ \langle R\sqcap^{\mathsf{FCD}}\mathord{\geq}\rangle \{x\} $ is the infinitely small right neighborhood filter of point $ x\in[-\infty,+\infty] $.

If proved true, the conjecture then can be generalized to a wider class of posets.


Unit vector flows ★★

Author(s): Jain

Conjecture   For every graph $ G $ without a bridge, there is a flow $ \phi : E(G) \rightarrow S^2 = \{ x \in {\mathbb R}^3 : |x| = 1 \} $.

Conjecture   There exists a map $ q:S^2 \rightarrow \{-4,-3,-2,-1,1,2,3,4\} $ so that antipodal points of $ S^2 $ receive opposite values, and so that any three points which are equidistant on a great circle have values which sum to zero.

Keywords: nowhere-zero flow

Average diameter of a bounded cell of a simple arrangement ★★

Author(s): Deza; Terlaky; Zinchenko

Conjecture   The average diameter of a bounded cell of a simple arrangement defined by $ n $ hyperplanes in dimension $ d $ is not greater than $ d $.

Keywords: arrangement; diameter; polytope

Monochromatic empty triangles ★★★


If $ X \subseteq {\mathbb R}^2 $ is a finite set of points which is 2-colored, an empty triangle is a set $ T \subseteq X $ with $ |T|=3 $ so that the convex hull of $ T $ is disjoint from $ X \setminus T $. We say that $ T $ is monochromatic if all points in $ T $ are the same color.

Conjecture   There exists a fixed constant $ c $ with the following property. If $ X \subseteq {\mathbb R}^2 $ is a set of $ n $ points in general position which is 2-colored, then it has $ \ge cn^2 $ monochromatic empty triangles.

Keywords: empty triangle; general position; ramsey theory

Faithful cycle covers ★★★

Author(s): Seymour

Conjecture   If $ G = (V,E) $ is a graph, $ p : E \rightarrow {\mathbb Z} $ is admissable, and $ p(e) $ is even for every $ e \in E(G) $, then $ (G,p) $ has a faithful cover.

Keywords: cover; cycle

Hamiltonian cycles in line graphs of infinite graphs ★★

Author(s): Georgakopoulos

    \item If $ G $ is a 4-edge-connected locally finite graph, then its line graph is hamiltonian. \item If the line graph $ L(G) $ of a locally finite graph $ G $ is 4-connected, then $ L(G) $ is hamiltonian.

Keywords: hamiltonian; infinite graph; line graphs

Inverse Galois Problem ★★★★

Author(s): Hilbert

Conjecture   Every finite group is the Galois group of some finite algebraic extension of $ \mathbb Q $.


Turán Problem for $10$-Cycles in the Hypercube ★★

Author(s): Erdos

Problem   Bound the extremal number of $ C_{10} $ in the hypercube.

Keywords: cycles; extremal combinatorics; hypercube

The Erdös-Hajnal Conjecture ★★★

Author(s): Erdos; Hajnal

Conjecture   For every fixed graph $ H $, there exists a constant $ \delta(H) $, so that every graph $ G $ without an induced subgraph isomorphic to $ H $ contains either a clique or an independent set of size $ |V(G)|^{\delta(H)} $.

Keywords: induced subgraph

Lovász Path Removal Conjecture ★★

Author(s): Lovasz

Conjecture   There is an integer-valued function $ f(k) $ such that if $ G $ is any $ f(k) $-connected graph and $ x $ and $ y $ are any two vertices of $ G $, then there exists an induced path $ P $ with ends $ x $ and $ y $ such that $ G-V(P) $ is $ k $-connected.


Covering a square with unit squares ★★


Conjecture   For any integer $ n \geq 1 $, it is impossible to cover a square of side greater than $ n $ with $ n^2+1 $ unit squares.


Dense rational distance sets in the plane ★★★

Author(s): Ulam

Problem   Does there exist a dense set $ S \subseteq {\mathbb R}^2 $ so that all pairwise distances between points in $ S $ are rational?

Keywords: integral distance; rational distance

Partial List Coloring ★★★

Author(s): Iradmusa

Let $ G $ be a simple graph, and for every list assignment $ \mathcal{L} $ let $ \lambda_{\mathcal{L}} $ be the maximum number of vertices of $ G $ which are colorable with respect to $ \mathcal{L} $. Define $ \lambda_t = \min{ \lambda_{\mathcal{L}} } $, where the minimum is taken over all list assignments $ \mathcal{L} $ with $ |\mathcal{L}| = t $ for all $ v \in V(G) $.

Conjecture   [2] Let $ G $ be a graph with list chromatic number $ \chi_\ell $ and $ 1\leq r\leq s\leq \chi_\ell $. Then \[\frac{\lambda_r}{r}\geq\frac{\lambda_s}{s}.\]

Keywords: list assignment; list coloring

Extremal problem on the number of tree endomorphism ★★

Author(s): Zhicong Lin

Conjecture   An endomorphism of a graph is a mapping on the vertex set of the graph which preserves edges. Among all the $ n $ vertices' trees, the star with $ n $ vertices has the most endomorphisms, while the path with $ n $ vertices has the least endomorphisms.


Growth of finitely presented groups ★★★

Author(s): Adyan

Problem   Does there exist a finitely presented group of intermediate growth?

Keywords: finitely presented; growth

Partition of a cubic 3-connected graphs into paths of length 2. ★★

Author(s): Kelmans

Problem   Does every $ 3 $-connected cubic graph on $ 3k $ vertices admit a partition into $ k $ paths of length $ 2 $?


Real roots of the flow polynomial ★★

Author(s): Welsh

Conjecture   All real roots of nonzero flow polynomials are at most 4.

Keywords: flow polynomial; nowhere-zero flow

Barnette's Conjecture ★★★

Author(s): Barnette

Conjecture   Every 3-connected cubic planar bipartite graph is Hamiltonian.

Keywords: bipartite; cubic; hamiltonian

Arc-disjoint directed cycles in regular directed graphs ★★

Author(s): Alon; McDiarmid; Molloy

Conjecture   If $ G $ is a $ k $-regular directed graph with no parallel arcs, then $ G $ contains a collection of $ {k+1 \choose 2} $ arc-disjoint directed cycles.


Primitive pythagorean n-tuple tree ★★


Conjecture   Find linear transformation construction of primitive pythagorean n-tuple tree!


Does the chromatic symmetric function distinguish between trees? ★★

Author(s): Stanley

Problem   Do there exist non-isomorphic trees which have the same chromatic symmetric function?

Keywords: chromatic polynomial; symmetric function; tree

What are hyperfuncoids isomorphic to? ★★

Author(s): Porton

Let $ \mathfrak{A} $ be an indexed family of sets.

Products are $ \prod A $ for $ A \in \prod \mathfrak{A} $.

Hyperfuncoids are filters $ \mathfrak{F} \Gamma $ on the lattice $ \Gamma $ of all finite unions of products.

Problem   Is $ \bigcap^{\mathsf{\tmop{FCD}}} $ a bijection from hyperfuncoids $ \mathfrak{F} \Gamma $ to:
    \item prestaroids on $ \mathfrak{A} $; \item staroids on $ \mathfrak{A} $; \item completary staroids on $ \mathfrak{A} $?

If yes, is $ \operatorname{up}^{\Gamma} $ defining the inverse bijection? If not, characterize the image of the function $ \bigcap^{\mathsf{\tmop{FCD}}} $ defined on $ \mathfrak{F} \Gamma $.

Consider also the variant of this problem with the set $ \Gamma $ replaced with the set $ \Gamma^{\ast} $ of complements of elements of the set $ \Gamma $.

Keywords: hyperfuncoids; multidimensional

The intersection of two perfect matchings ★★

Author(s): Macajova; Skoviera

Conjecture   Every bridgeless cubic graph has two perfect matchings $ M_1 $, $ M_2 $ so that $ M_1 \cap M_2 $ does not contain an odd edge-cut.

Keywords: cubic; nowhere-zero flow; perfect matching

Jacobian Conjecture ★★★

Author(s): Keller

Conjecture   Let $ k $ be a field of characteristic zero. A collection $ f_1,\ldots,f_n $ of polynomials in variables $ x_1,\ldots,x_n $ defines an automorphism of $ k^n $ if and only if the Jacobian matrix is a nonzero constant.

Keywords: Affine Geometry; Automorphisms; Polynomials

Rota's unimodal conjecture ★★★

Author(s): Rota

Let $ M $ be a matroid of rank $ r $, and for $ 0 \le i \le r $ let $ w_i $ be the number of closed sets of rank $ i $.

Conjecture   $ w_0,w_1,\ldots,w_r $ is unimodal.
Conjecture   $ w_0,w_1,\ldots,w_r $ is log-concave.

Keywords: flat; log-concave; matroid

4-regular 4-chromatic graphs of high girth ★★

Author(s): Grunbaum

Problem   Do there exist 4-regular 4-chromatic graphs of arbitrarily high girth?

Keywords: coloring; girth

Unconditional derandomization of Arthur-Merlin games ★★★

Author(s): Shaltiel; Umans

Problem   Prove unconditionally that $ \mathcal{AM} $ $ \subseteq $ $ \Sigma_2 $.

Keywords: Arthur-Merlin; Hitting Sets; unconditional

Monochromatic reachability in arc-colored digraphs ★★★

Author(s): Sands; Sauer; Woodrow

Conjecture   For every $ k $, there exists an integer $ f(k) $ such that if $ D $ is a digraph whose arcs are colored with $ k $ colors, then $ D $ has a $ S $ set which is the union of $ f(k) $ stables sets so that every vertex has a monochromatic path to some vertex in $ S $.


The Berge-Fulkerson conjecture ★★★★

Author(s): Berge; Fulkerson

Conjecture   If $ G $ is a bridgeless cubic graph, then there exist 6 perfect matchings $ M_1,\ldots,M_6 $ of $ G $ with the property that every edge of $ G $ is contained in exactly two of $ M_1,\ldots,M_6 $.

Keywords: cubic; perfect matching

Edge-disjoint Hamilton cycles in highly strongly connected tournaments. ★★

Author(s): Thomassen

Conjecture   For every $ k\geq 2 $, there is an integer $ f(k) $ so that every strongly $ f(k) $-connected tournament has $ k $ edge-disjoint Hamilton cycles.


Half-integral flow polynomial values ★★

Author(s): Mohar

Let $ \Phi(G,x) $ be the flow polynomial of a graph $ G $. So for every positive integer $ k $, the value $ \Phi(G,k) $ equals the number of nowhere-zero $ k $-flows in $ G $.

Conjecture   $ \Phi(G,5.5) > 0 $ for every 2-edge-connected graph $ G $.

Keywords: nowhere-zero flow

inverse of an integer matrix ★★

Author(s): Gregory

Question   I've been working on this for a long time and I'm getting nowhere. Could you help me or at least tell me where to look for help. Suppose D is an m-by-m diagonal matrix with integer elements all $ \ge 2 $. Suppose X is an m-by-n integer matrix $ (m \le n) $. Consider the partitioned matrix M = [D X]. Obviously M has full row rank so it has a right inverse of rational numbers. The question is, under what conditions does it have an integer right inverse? My guess, which I can't prove, is that the integers in each row need to be relatively prime.

Keywords: invertable matrices, integer matrices

S(S(f)) = S(f) for reloids ★★

Author(s): Porton

Question   $ S(S(f)) = S(f) $ for every endo-reloid $ f $?

Keywords: reloid

Edge-Colouring Geometric Complete Graphs ★★

Author(s): Hurtado

Question   What is the minimum number of colours such that every complete geometric graph on $ n $ vertices has an edge colouring such that:
    \item[Variant A] crossing edges get distinct colours, \item[Variant B] disjoint edges get distinct colours, \item[Variant C] non-disjoint edges get distinct colours, \item[Variant D] non-crossing edges get distinct colours.

Keywords: geometric complete graph, colouring

The Two Color Conjecture ★★

Author(s): Neumann-Lara

Conjecture   If $ G $ is an orientation of a simple planar graph, then there is a partition of $ V(G) $ into $ \{X_1,X_2\} $ so that the graph induced by $ X_i $ is acyclic for $ i=1,2 $.

Keywords: acyclic; digraph; planar

3 is a primitive root modulo primes of the form 16 q^4 + 1, where q>3 is prime ★★


Conjecture   $ 3~ $ is a primitive root modulo $ ~p $ for all primes $ ~p=16\cdot q^4+1 $, where $ ~q>3 $ is prime.


57-regular Moore graph? ★★★

Author(s): Hoffman; Singleton

Question   Does there exist a 57-regular graph with diameter 2 and girth 5?

Keywords: cage; Moore graph

Odd perfect numbers ★★★

Author(s): Ancient/folklore

Conjecture   There is no odd perfect number.

Keywords: perfect number

Complete bipartite subgraphs of perfect graphs ★★

Author(s): Fox

Problem   Let $ G $ be a perfect graph on $ n $ vertices. Is it true that either $ G $ or $ \bar{G} $ contains a complete bipartite subgraph with bipartition $ (A,B) $ so that $ |A|, |B| \ge n^{1 - o(1)} $?

Keywords: perfect graph

Few subsequence sums in Z_n x Z_n ★★

Author(s): Bollobas; Leader

Conjecture   For every $ 0 \le t \le n-1 $, the sequence in $ {\mathbb Z}_n^2 $ consisting of $ n-1 $ copes of $ (1,0) $ and $ t $ copies of $ (0,1) $ has the fewest number of distinct subsequence sums over all zero-free sequences from $ {\mathbb Z}_n^2 $ of length $ n-1+t $.

Keywords: subsequence sum; zero sum

The robustness of the tensor product ★★★

Author(s): Ben-Sasson; Sudan

Problem   Given two codes $ R,C $, their Tensor Product $ R \otimes C $ is the code that consists of the matrices whose rows are codewords of $ R $ and whose columns are codewords of $ C $. The product $ R \otimes C $ is said to be robust if whenever a matrix $ M $ is far from $ R \otimes C $, the rows (columns) of $ M $ are far from $ R $ ($ C $, respectively).

The problem is to give a characterization of the pairs $ R,C $ whose tensor product is robust.

Keywords: codes; coding; locally testable; robustness

Odd cycles and low oddness ★★


Conjecture   If in a bridgeless cubic graph $ G $ the cycles of any $ 2 $-factor are odd, then $ \omega(G)\leq 2 $, where $ \omega(G) $ denotes the oddness of the graph $ G $, that is, the minimum number of odd cycles in a $ 2 $-factor of $ G $.


Turán's problem for hypergraphs ★★

Author(s): Turan

Conjecture   Every simple $ 3 $-uniform hypergraph on $ 3n $ vertices which contains no complete $ 3 $-uniform hypergraph on four vertices has at most $ \frac12 n^2(5n-3) $ hyperedges.
Conjecture   Every simple $ 3 $-uniform hypergraph on $ 2n $ vertices which contains no complete $ 3 $-uniform hypergraph on five vertices has at most $ n^2(n-1) $ hyperedges.


Chords of longest cycles ★★★

Author(s): Thomassen

Conjecture   If $ G $ is a 3-connected graph, every longest cycle in $ G $ has a chord.

Keywords: chord; connectivity; cycle