Solved problems

TitleAuthor(s)Imp.¹Rec.²Area » Topic » Subtopicsort iconPosted by
On Gersgorin Theorem✭✭0AlgebraMiwa Lin
Inequality of complex numbers✭✭1Analysisfeanor
Oakley sunglasses can successfully secure their sight will very likely be common-sense✭✭0Analysishaumiki
Difference between neighbors in a matrixVadim Lioubimov1Combinatorics » MatricesVadim Lioubimov
Geometric Hales-Jewett TheoremPor; Wood✭✭0GeometryDavid Wood
Hirsch ConjectureHirsch✭✭✭0Geometry » PolytopesRobert Samal
Decomposing the truncated octahedron into parallelepipeds1Geometry » Polytopesmdevos
spanning trees✭✭1Graph Theoryakhodkar
Hitting every large maximal clique with a stable setKing; Rabern✭✭1Graph TheoryAndrew King
Matching polynomials of vertex transitive graphsMohar✭✭0Graph Theory » Algebraic G.T.Robert Samal
Fowler's Conjecture on eigenvalues of (3,6)-polyhedraFowler✭✭0Graph Theory » Algebraic G.T.Robert Samal
The sum of the two largest eigenvaluesGernert✭✭0Graph Theory » Algebraic G.T.mdevos
Total Domination number of a hypercubeAdel P. Kazemi✭✭✭0Graph Theory » Basic G.T.Adel P. Kazemi
Bigger cycles in cubic graphs✭✭0Graph Theory » Basic G.T. » Cyclesmdevos
Middle levels problemErdos✭✭0Graph Theory » Basic G.T. » Cyclestchow
Petersen graph conjectureMkrtchyan; Petrosyan1Graph Theory » Basic G.T. » Matchingsvahanmkrtchyan2002
Exponentially many perfect matchings in cubic graphsLovasz; Plummer✭✭✭0Graph Theory » Basic G.T. » Matchingsmdevos
Colouring $d$-degenerate graphs with large girthWood✭✭1Graph Theory » ColoringDavid Wood
Good edge labeling and girthBode-Farzad-Theis✭✭0Graph Theory » Coloring » LabelingDOT
(2 + epsilon)-flow conjectureGoddyn; Seymour✭✭✭0Graph Theory » Coloring » Nowhere-zero flowsmdevos
Alon-Saks-Seymour ConjectureAlon; Saks; Seymour✭✭✭0Graph Theory » Coloring » Vertex coloringmdevos
Bounding the chromatic number of graphs with no odd holeGyarfas✭✭✭0Graph Theory » Coloring » Vertex coloringmdevos
Coloring squares of hypercubesWan✭✭1Graph Theory » Coloring » Vertex coloringmdevos
Does every subcubic triangle-free graph have fractional chromatic number at most 14/5?Heckman; Thomas0Graph Theory » Coloring » Vertex coloringAndrew King
Ohba's ConjectureOhba✭✭1Graph Theory » Coloring » Vertex coloringJon Noel
Steinberg's conjecture✭✭✭✭0Graph Theory » Coloring » Vertex coloringfhavet
Choice number of complete multipartite graphs with parts of size 41Graph Theory » Coloring » Vertex coloringJon Noel
Total Dominator Chromatic Number of a HypercubeAdel P. Kazemi✭✭0Graph Theory » Coloring » Vertex coloringAdel P. Kazemi
Nonrepetitive colourings of planar graphsAlon N.; Grytczuk J.; Hałuszczak M.; Riordan O.✭✭0Graph Theory » Coloring » Vertex coloringDavid Wood
Monochromatic reachability in edge-colored tournamentsErdos✭✭✭0Graph Theory » Directed Graphs » Tournamentsmdevos
Bounded colorings for planar graphsAlon; Ding; Oporowski; Vertigan✭✭1Graph Theory » Topological G.T. » Coloringmdevos
5-coloring graphs with small crossing & clique numbersOporowski; Zhao✭✭1Graph Theory » Topological G.T. » Coloringmdevos
Straight line representation of planar linear hypergraphsOssona de Mendez; de Fraysseix✭✭0Graph Theory » Topological G.T. » Drawingstaxipom
Hall-Paige conjectureHall; Paige✭✭✭0Group Theorymdevos
Complexity of QBF(Bounded Treewidth)Moshe Y. Vardi✭✭0Logic » Finite Model Theorymyvardi
Special MKimberling✭✭1Number Theoryvprusso
DIS-PROOF OF BEALS CONJECTURE✭✭✭0Number Theory » Additive N.T.lalitha
Star height problemLawrence Eggan C.✭✭0Theoretical Comp. Sci.porton
Intersection of complete funcoidsPorton✭✭0Topologyporton
Monovalued reloid is a restricted functionPorton✭✭0Topologyporton
Distributivity of composition over union of reloidsPorton✭✭0Topologyporton
Funcoid corresponding to inward reloidPorton✭✭0Topologyporton
Distributivity of outward reloid over composition of funcoidsPorton✭✭0Topologyporton
Outward reloid corresponding to a funcoid corresponding to convex reloidPorton✭✭0Topologyporton
Inward reloid corresponding to a funcoid corresponding to convex reloidPorton✭✭0Topologyporton
Distributivity of union of funcoids corresponding to reloidsPorton✭✭0Topologyporton
Reloid corresponding to funcoid is between outward and inward reloidPorton✭✭0Topologyporton
Is every regular paratopological group Tychonoff?unknown✭✭0Topologyporton
Composition of atomic reloidsPorton✭✭0Topologyporton
Atomic reloids are monovaluedPorton✭✭0Topologyporton