Recent Activity

Unconditional derandomization of Arthur-Merlin games ★★★

Author(s): Shaltiel; Umans

Problem   Prove unconditionally that $ \mathcal{AM} $ $ \subseteq $ $ \Sigma_2 $.

Keywords: Arthur-Merlin; Hitting Sets; unconditional

Subset-sums equality (pigeonhole version) ★★★

Author(s):

Problem   Let $ a_1,a_2,\ldots,a_n $ be natural numbers with $ \sum_{i=1}^n a_i < 2^n - 1 $. It follows from the pigeon-hole principle that there exist distinct subsets $ I,J \subseteq \{1,\ldots,n\} $ with $ \sum_{i \in I} a_i = \sum_{j \in J} a_j $. Is it possible to find such a pair $ I,J $ in polynomial time?

Keywords: polynomial algorithm; search problem

Weak pentagon problem ★★

Author(s): Samal

Conjecture   If $ G $ is a cubic graph not containing a triangle, then it is possible to color the edges of $ G $ by five colors, so that the complement of every color class is a bipartite graph.

Keywords: Clebsch graph; cut-continuous mapping; edge-coloring; homomorphism; pentagon

Lonely runner conjecture ★★★

Author(s): Cusick; Wills

Conjecture   Suppose $ k $ runners having distinct constant speeds start at a common point and run laps on a circular track with circumference 1. Then for any given runner, there is a time at which that runner is distance at least $ \frac{1}{k} $ (along the track) away from every other runner.

Keywords: diophantine approximation; view obstruction

Mapping planar graphs to odd cycles ★★★

Author(s): Jaeger

Conjecture   Every planar graph of girth $ \ge 4k $ has a homomorphism to $ C_{2k+1} $.

Keywords: girth; homomorphism; planar graph

5-local-tensions ★★

Author(s): DeVos

Conjecture   There exists a fixed constant $ c $ (probably $ c=4 $ suffices) so that every embedded (loopless) graph with edge-width $ \ge c $ has a 5-local-tension.

Keywords: coloring; surface; tension

Concavity of van der Waerden numbers ★★

Author(s): Landman

For $ k $ and $ \ell $ positive integers, the (mixed) van der Waerden number $ w(k,\ell) $ is the least positive integer $ n $ such that every (red-blue)-coloring of $ [1,n] $ admits either a $ k $-term red arithmetic progression or an $ \ell $-term blue arithmetic progression.

Conjecture   For all $ k $ and $ \ell $ with $ k \geq \ell $, $ w(k,\ell) \geq w(k+1,\ell-1) $.

Keywords: arithmetic progression; van der Waerden

Circular coloring triangle-free subcubic planar graphs ★★

Author(s): Ghebleh; Zhu

Problem   Does every triangle-free planar graph of maximum degree three have circular chromatic number at most $ \frac{20}{7} $?

Keywords: circular coloring; planar graph; triangle free

List colorings of edge-critical graphs ★★

Author(s): Mohar

Conjecture   Suppose that $ G $ is a $ \Delta $-edge-critical graph. Suppose that for each edge $ e $ of $ G $, there is a list $ L(e) $ of $ \Delta $ colors. Then $ G $ is $ L $-edge-colorable unless all lists are equal to each other.

Keywords: edge-coloring; list coloring

Aharoni-Berger conjecture ★★★

Author(s): Aharoni; Berger

Conjecture   If $ M_1,\ldots,M_k $ are matroids on $ E $ and $ \sum_{i=1}^k rk_{M_i}(X_i) \ge \ell (k-1) $ for every partition $ \{X_1,\ldots,X_k\} $ of $ E $, then there exists $ X \subseteq E $ with $ |X| = \ell $ which is independent in every $ M_i $.

Keywords: independent set; matroid; partition

The large sets conjecture ★★★

Author(s): Brown; Graham; Landman

Conjecture   If $ A $ is 2-large, then $ A $ is large.

Keywords: 2-large sets; large sets

Ramsey properties of Cayley graphs ★★★

Author(s): Alon

Conjecture   There exists a fixed constant $ c $ so that every abelian group $ G $ has a subset $ S \subseteq G $ with $ -S = S $ so that the Cayley graph $ {\mathit Cayley}(G,S) $ has no clique or independent set of size $ > c \log |G| $.

Keywords: Cayley graph; Ramsey number

Bases of many weights ★★★

Author(s): Schrijver; Seymour

Let $ G $ be an (additive) abelian group, and for every $ S \subseteq G $ let $ {\mathit stab}(S) = \{ g \in G : g + S = S \} $.

Conjecture   Let $ M $ be a matroid on $ E $, let $ w : E \rightarrow G $ be a map, put $ S = \{ \sum_{b \in B} w(b) : B \mbox{ is a base} \} $ and $ H = {\mathit stab}(S) $. Then $$|S| \ge |H| \left( 1 - rk(M) + \sum_{Q \in G/H} rk(w^{-1}(Q)) \right).$$

Keywords: matroid; sumset; zero sum

The Erdos-Turan conjecture on additive bases ★★★★

Author(s): Erdos; Turan

Let $ B \subseteq {\mathbb N} $. The representation function $ r_B : {\mathbb N} \rightarrow {\mathbb N} $ for $ B $ is given by the rule $ r_B(k) = \#\{ (i,j) \in B \times B : i + j = k \} $. We call $ B $ an additive basis if $ r_B $ is never $ 0 $.

Conjecture   If $ B $ is an additive basis, then $ r_B $ is unbounded.

Keywords: additive basis; representation function

Rota's unimodal conjecture ★★★

Author(s): Rota

Let $ M $ be a matroid of rank $ r $, and for $ 0 \le i \le r $ let $ w_i $ be the number of closed sets of rank $ i $.

Conjecture   $ w_0,w_1,\ldots,w_r $ is unimodal.
Conjecture   $ w_0,w_1,\ldots,w_r $ is log-concave.

Keywords: flat; log-concave; matroid

A conjecture on iterated circumcentres ★★

Author(s): Goddyn

Conjecture   Let $ p_1,p_2,p_3,\ldots $ be a sequence of points in $ {\mathbb R}^d $ with the property that for every $ i \ge d+2 $, the points $ p_{i-1}, p_{i-2}, \ldots p_{i-d-1} $ are distinct, lie on a unique sphere, and further, $ p_i $ is the center of this sphere. If this sequence is periodic, must its period be $ 2d+4 $?

Keywords: periodic; plane geometry; sequence

Unions of triangle free graphs ★★★

Author(s): Erdos; Hajnal

Problem   Does there exist a graph with no subgraph isomorphic to $ K_4 $ which cannot be expressed as a union of $ \aleph_0 $ triangle free graphs?

Keywords: forbidden subgraph; infinite graph; triangle free

The Two Color Conjecture ★★

Author(s): Neumann-Lara

Conjecture   If $ G $ is an orientation of a simple planar graph, then there is a partition of $ V(G) $ into $ \{X_1,X_2\} $ so that the graph induced by $ X_i $ is acyclic for $ i=1,2 $.

Keywords: acyclic; digraph; planar

Half-integral flow polynomial values ★★

Author(s): Mohar

Let $ \Phi(G,x) $ be the flow polynomial of a graph $ G $. So for every positive integer $ k $, the value $ \Phi(G,k) $ equals the number of nowhere-zero $ k $-flows in $ G $.

Conjecture   $ \Phi(G,5.5) > 0 $ for every 2-edge-connected graph $ G $.

Keywords: nowhere-zero flow

Gao's theorem for nonabelian groups ★★

Author(s): DeVos

For every finite multiplicative group $ G $, let $ s(G) $ ($ s'(G) $) denote the smallest integer $ m $ so that every sequence of $ m $ elements of $ G $ has a subsequence of length $ >0 $ (length $ |G| $) which has product equal to 1 in some order.

Conjecture   $ s'(G) = s(G) + |G| - 1 $ for every finite group $ G $.

Keywords: subsequence sum; zero sum