Random

Ádám's Conjecture ★★★

Author(s): Ádám

Conjecture   Every digraph with at least one directed cycle has an arc whose reversal reduces the number of directed cycles.

Keywords:

Inequality for square summable complex series ★★

Author(s): Retkes

Conjecture   For all $ \alpha=(\alpha_1,\alpha_2,\ldots)\in l_2(\cal{C}) $ the following inequality holds $$\sum_{n\geq 1}|\alpha_n|^2\geq \frac{6}{\pi^2}\sum_{k\geq0}\bigg| \sum_{l\geq0}\frac{1}{l+1}\alpha_{2^k(2l+1)}\bigg|^2 $$

Keywords: Inequality

Ding's tau_r vs. tau conjecture ★★★

Author(s): Ding

Conjecture   Let $ r \ge 2 $ be an integer and let $ H $ be a minor minimal clutter with $ \frac{1}{r}\tau_r(H) < \tau(H) $. Then either $ H $ has a $ J_k $ minor for some $ k \ge 2 $ or $ H $ has Lehman's property.

Keywords: clutter; covering; MFMC property; packing

Vertex Coloring of graph fractional powers ★★★

Author(s): Iradmusa

Conjecture   Let $ G $ be a graph and $ k $ be a positive integer. The $ k- $power of $ G $, denoted by $ G^k $, is defined on the vertex set $ V(G) $, by connecting any two distinct vertices $ x $ and $ y $ with distance at most $ k $. In other words, $ E(G^k)=\{xy:1\leq d_G(x,y)\leq k\} $. Also $ k- $subdivision of $ G $, denoted by $ G^\frac{1}{k} $, is constructed by replacing each edge $ ij $ of $ G $ with a path of length $ k $. Note that for $ k=1 $, we have $ G^\frac{1}{1}=G^1=G $.
Now we can define the fractional power of a graph as follows:
Let $ G $ be a graph and $ m,n\in \mathbb{N} $. The graph $ G^{\frac{m}{n}} $ is defined by the $ m- $power of the $ n- $subdivision of $ G $. In other words $ G^{\frac{m}{n}}\isdef (G^{\frac{1}{n}})^m $.
Conjecture. Let $ G $ be a connected graph with $ \Delta(G)\geq3 $ and $ m $ be a positive integer greater than 1. Then for any positive integer $ n>m $, we have $ \chi(G^{\frac{m}{n}})=\omega(G^\frac{m}{n}) $.
In [1], it was shown that this conjecture is true in some special cases.

Keywords: chromatic number, fractional power of graph, clique number

Jorgensen's Conjecture ★★★

Author(s): Jorgensen

Conjecture   Every 6-connected graph without a $ K_6 $ minor is apex (planar plus one vertex).

Keywords: connectivity; minor

Frobenius number of four or more integers ★★

Author(s):

Problem   Find an explicit formula for Frobenius number $ g(a_1, a_2, \dots, a_n) $ of co-prime positive integers $ a_1, a_2, \dots, a_n $ for $ n\geq 4 $.

Keywords:

Sticky Cantor sets ★★

Author(s):

Conjecture   Let $ C $ be a Cantor set embedded in $ \mathbb{R}^n $. Is there a self-homeomorphism $ f $ of $ \mathbb{R}^n $ for every $ \epsilon $ greater than $ 0 $ so that $ f $ moves every point by less than $ \epsilon $ and $ f(C) $ does not intersect $ C $? Such an embedded Cantor set for which no such $ f $ exists (for some $ \epsilon $) is called "sticky". For what dimensions $ n $ do sticky Cantor sets exist?

Keywords: Cantor set

Linial-Berge path partition duality ★★★

Author(s): Berge; Linial

Conjecture   The minimum $ k $-norm of a path partition on a directed graph $ D $ is no more than the maximal size of an induced $ k $-colorable subgraph.

Keywords: coloring; directed path; partition

Hamiltonian cycles in powers of infinite graphs ★★

Author(s): Georgakopoulos

Conjecture  
    \item If $ G $ is a countable connected graph then its third power is hamiltonian. \item If $ G $ is a 2-connected countable graph then its square is hamiltonian.

Keywords: hamiltonian; infinite graph

Seagull problem ★★★

Author(s): Seymour

Conjecture   Every $ n $ vertex graph with no independent set of size $ 3 $ has a complete graph on $ \ge \frac{n}{2} $ vertices as a minor.

Keywords: coloring; complete graph; minor

Every prism over a 3-connected planar graph is hamiltonian. ★★

Author(s): Kaiser; Král; Rosenfeld; Ryjácek; Voss

Conjecture   If $ G $ is a $ 3 $-connected planar graph, then $ G\square K_2 $ has a Hamilton cycle.

Keywords:

Hamiltonian paths and cycles in vertex transitive graphs ★★★

Author(s): Lovasz

Problem   Does every connected vertex-transitive graph have a Hamiltonian path?

Keywords: cycle; hamiltonian; path; vertex-transitive

One-way functions exist ★★★★

Author(s):

Conjecture   One-way functions exist.

Keywords: one way function

Monadic second-order logic with cardinality predicates ★★

Author(s): Courcelle

The problem concerns the extension of Monadic Second Order Logic (over a binary relation representing the edge relation) with the following atomic formulas:

    \item $ \text{``}\,\mathrm{Card}(X) = \mathrm{Card}(Y)\,\text{''} $ \item $ \text{``}\,\mathrm{Card}(X) \text{ belongs to } A\,\text{''} $

where $ A $ is a fixed recursive set of integers.

Let us fix $ k $ and a closed formula $ F $ in this language.

Conjecture   Is it true that the validity of $ F $ for a graph $ G $ of tree-width at most $ k $ can be tested in polynomial time in the size of $ G $?

Keywords: bounded tree width; cardinality predicates; FMT03-Bedlewo; MSO

Kneser–Poulsen conjecture ★★★

Author(s): Kneser; Poulsen

Conjecture   If a finite set of unit balls in $ \mathbb{R}^n $ is rearranged so that the distance between each pair of centers does not decrease, then the volume of the union of the balls does not decrease.

Keywords: pushing disks

Discrete Logarithm Problem ★★★

Author(s):

If $ p $ is prime and $ g,h \in {\mathbb Z}_p^* $, we write $ \log_g(h) = n $ if $ n \in {\mathbb Z} $ satisfies $ g^n =  h $. The problem of finding such an integer $ n $ for a given $ g,h \in {\mathbb Z}^*_p $ (with $ g \neq 1 $) is the Discrete Log Problem.

Conjecture   There does not exist a polynomial time algorithm to solve the Discrete Log Problem.

Keywords: discrete log; NP

Hamiltonian cycles in line graphs ★★★

Author(s): Thomassen

Conjecture   Every 4-connected line graph is hamiltonian.

Keywords: hamiltonian; line graphs

Alexa's Conjecture on Primality ★★

Author(s): Alexa

Definition   Let $ r_i $ be the unique integer (with respect to a fixed $ p\in\mathbb{N} $) such that

$$(2i+1)^{p-1} \equiv r_i \pmod p ~~\text{ and } ~ 0 \le r_i < p. $$

Conjecture   A natural number $ p \ge 8 $ is a prime iff $$ \displaystyle \sum_{i=1}^{\left \lfloor \frac{\sqrt[3]p}{2} \right \rfloor} r_i = \left \lfloor \frac{\sqrt[3]p}{2} \right \rfloor $$

Keywords: primality

4-connected graphs are not uniquely hamiltonian ★★

Author(s): Fleischner

Conjecture   Every $ 4 $-connected graph with a Hamilton cycle has a second Hamilton cycle.

Keywords:

The intersection of two perfect matchings ★★

Author(s): Macajova; Skoviera

Conjecture   Every bridgeless cubic graph has two perfect matchings $ M_1 $, $ M_2 $ so that $ M_1 \cap M_2 $ does not contain an odd edge-cut.

Keywords: cubic; nowhere-zero flow; perfect matching

Partition of a cubic 3-connected graphs into paths of length 2. ★★

Author(s): Kelmans

Problem   Does every $ 3 $-connected cubic graph on $ 3k $ vertices admit a partition into $ k $ paths of length $ 2 $?

Keywords:

Stable set meeting all longest directed paths. ★★

Author(s): Laborde; Payan; Xuong N.H.

Conjecture   Every digraph has a stable set meeting all longest directed paths

Keywords:

The circular embedding conjecture ★★★

Author(s): Haggard

Conjecture   Every 2-connected graph may be embedded in a surface so that the boundary of each face is a cycle.

Keywords: cover; cycle

Frankl's union-closed sets conjecture ★★

Author(s): Frankl

Conjecture   Let $ F $ be a finite family of finite sets, not all empty, that is closed under taking unions. Then there exists $ x $ such that $ x $ is an element of at least half the members of $ F $.

Keywords:

Unions of triangle free graphs ★★★

Author(s): Erdos; Hajnal

Problem   Does there exist a graph with no subgraph isomorphic to $ K_4 $ which cannot be expressed as a union of $ \aleph_0 $ triangle free graphs?

Keywords: forbidden subgraph; infinite graph; triangle free

Exact colorings of graphs ★★

Author(s): Erickson

Conjecture   For $ c \geq m \geq 1 $, let $ P(c,m) $ be the statement that given any exact $ c $-coloring of the edges of a complete countably infinite graph (that is, a coloring with $ c $ colors all of which must be used at least once), there exists an exactly $ m $-colored countably infinite complete subgraph. Then $ P(c,m) $ is true if and only if $ m=1 $, $ m=2 $, or $ c=m $.

Keywords: graph coloring; ramsey theory

Arc-disjoint out-branching and in-branching ★★

Author(s): Thomassen

Conjecture   There exists an integer $ k $ such that every $ k $-arc-strong digraph $ D $ with specified vertices $ u $ and $ v $ contains an out-branching rooted at $ u $ and an in-branching rooted at $ v $ which are arc-disjoint.

Keywords:

Lindelöf hypothesis ★★

Author(s): Lindelöf

Conjecture   For any $ \epsilon>0 $ $$\zeta\left(\frac12 + it\right) \mbox{ is }\mathcal{O}(t^\epsilon).$$

Since $ \epsilon $ can be replaced by a smaller value, we can also write the conjecture as, for any positive $ \epsilon $, $$\zeta\left(\frac12 + it\right) \mbox{ is }o(t^\varepsilon).$$

Keywords: Riemann Hypothesis; zeta

Diophantine quintuple conjecture ★★

Author(s):

Definition   A set of m positive integers $ \{a_1, a_2, \dots, a_m\} $ is called a Diophantine $ m $-tuple if $ a_i\cdot a_j + 1 $ is a perfect square for all $ 1 \leq i < j \leq m $.
Conjecture  (1)   Diophantine quintuple does not exist.

It would follow from the following stronger conjecture [Da]:

Conjecture  (2)   If $ \{a, b, c, d\} $ is a Diophantine quadruple and $ d > \max \{a, b, c\} $, then $ d = a + b + c + 2bc + 2\sqrt{(ab+1)(ac+1)(bc+1)}. $

Keywords:

Convex Equipartitions with Extreme Perimeter ★★

Author(s): Nandakumar

To divide a given 2D convex region C into a specified number n of convex pieces all of equal area (perimeters could be different) such that the total perimeter of pieces is (1) maximized (2) minimized.

Remark: It appears maximizing the total perimeter is the easier problem.

Keywords: convex equipartition

Snevily's conjecture ★★★

Author(s): Snevily

Conjecture   Let $ G $ be an abelian group of odd order and let $ A,B \subseteq G $ satisfy $ |A| = |B| = k $. Then the elements of $ A $ and $ B $ may be ordered $ A = \{a_1,\ldots,a_k\} $ and $ B = \{b_1,\ldots,b_k\} $ so that the sums $ a_1+b_1, a_2+b_2 \ldots, a_k + b_k $ are pairwise distinct.

Keywords: addition table; latin square; transversal

The Berge-Fulkerson conjecture ★★★★

Author(s): Berge; Fulkerson

Conjecture   If $ G $ is a bridgeless cubic graph, then there exist 6 perfect matchings $ M_1,\ldots,M_6 $ of $ G $ with the property that every edge of $ G $ is contained in exactly two of $ M_1,\ldots,M_6 $.

Keywords: cubic; perfect matching

Unfriendly partitions ★★★

Author(s): Cowan; Emerson

If $ G $ is a graph, we say that a partition of $ V(G) $ is unfriendly if every vertex has at least as many neighbors in the other classes as in its own.

Problem   Does every countably infinite graph have an unfriendly partition into two sets?

Keywords: coloring; infinite graph; partition

Circular colouring the orthogonality graph ★★

Author(s): DeVos; Ghebleh; Goddyn; Mohar; Naserasr

Let $ {\mathcal O} $ denote the graph with vertex set consisting of all lines through the origin in $ {\mathbb R}^3 $ and two vertices adjacent in $ {\mathcal O} $ if they are perpendicular.

Problem   Is $ \chi_c({\mathcal O}) = 4 $?

Keywords: circular coloring; geometric graph; orthogonality

Decomposition of completions of reloids ★★

Author(s): Porton

Conjecture   For composable reloids $ f $ and $ g $ it holds
    \item $ \operatorname{Compl} ( g \circ f) = ( \operatorname{Compl} g) \circ f $ if $ f $ is a co-complete reloid; \item $ \operatorname{CoCompl} ( f \circ g) = f \circ \operatorname{CoCompl} g $ if $ f $ is a complete reloid; \item $ \operatorname{CoCompl} ( ( \operatorname{Compl} g) \circ f) = \operatorname{Compl} ( g \circ   ( \operatorname{CoCompl} f)) = ( \operatorname{Compl} g) \circ ( \operatorname{CoCompl} f) $; \item $ \operatorname{Compl} ( g \circ ( \operatorname{Compl} f)) = \operatorname{Compl} ( g \circ   f) $; \item $ \operatorname{CoCompl} ( ( \operatorname{CoCompl} g) \circ f) = \operatorname{CoCompl} ( g   \circ f) $.

Keywords: co-completion; completion; reloid

Shuffle-Exchange Conjecture (graph-theoretic form) ★★★

Author(s): Beneš; Folklore; Stone

Given integers $ k,n \ge 2 $, the 2-stage Shuffle-Exchange graph/network, denoted $ \text{SE}(k,n) $, is the simple $ k $-regular bipartite graph with the ordered pair $ (U,V) $ of linearly labeled parts $ U:=\{u_0,\dots,u_{t-1}\} $ and $ V:=\{v_0,\dots,v_{t-1}\} $, where $ t:=k^{n-1} $, such that vertices $ u_i $ and $ v_j $ are adjacent if and only if $ (j - ki) \text{ mod } t < k $ (see Fig.1).

Given integers $ k,n,r \ge 2 $, the $ r $-stage Shuffle-Exchange graph/network, denoted $ (\text{SE}(k,n))^{r-1} $, is the proper (i.e., respecting all the orders) concatenation of $ r-1 $ identical copies of $ \text{SE}(k,n) $ (see Fig.1).

Let $ r(k,n) $ be the smallest integer $ r\ge 2 $ such that the graph $ (\text{SE}(k,n))^{r-1} $ is rearrangeable.

Problem   Find $ r(k,n) $.
Conjecture   $ r(k,n)=2n-1 $.

Keywords:

Kriesell's Conjecture ★★

Author(s): Kriesell

Conjecture   Let $ G $ be a graph and let $ T\subseteq V(G) $ such that for any pair $ u,v\in T $ there are $ 2k $ edge-disjoint paths from $ u $ to $ v $ in $ G $. Then $ G $ contains $ k $ edge-disjoint trees, each of which contains $ T $.

Keywords: Disjoint paths; edge-connectivity; spanning trees

Nearly spanning regular subgraphs ★★★

Author(s): Alon; Mubayi

Conjecture   For every $ \epsilon > 0 $ and every positive integer $ k $, there exists $ r_0 = r_0(\epsilon,k) $ so that every simple $ r $-regular graph $ G $ with $ r \ge r_0 $ has a $ k $-regular subgraph $ H $ with $ |V(H)| \ge (1- \epsilon) |V(G)| $.

Keywords: regular; subgraph

Is Skewes' number e^e^e^79 an integer? ★★

Author(s):

Conjecture  

Skewes' number $ e^{e^{e^{79}}} $ is not an integer.

Keywords:

Long directed cycles in diregular digraphs ★★★

Author(s): Jackson

Conjecture   Every strong oriented graph in which each vertex has indegree and outdegree at least $ d $ contains a directed cycle of length at least $ 2d+1 $.

Keywords:

Non-edges vs. feedback edge sets in digraphs ★★★

Author(s): Chudnovsky; Seymour; Sullivan

For any simple digraph $ G $, we let $ \gamma(G) $ be the number of unordered pairs of nonadjacent vertices (i.e. the number of non-edges), and $ \beta(G) $ be the size of the smallest feedback edge set.

Conjecture  If $ G $ is a simple digraph without directed cycles of length $ \le 3 $, then $ \beta(G) \le \frac{1}{2} \gamma(G) $.

Keywords: acyclic; digraph; feedback edge set; triangle free

The 3n+1 conjecture ★★★

Author(s): Collatz

Conjecture   Let $ f(n) = 3n+1 $ if $ n $ is odd and $ \frac{n}{2} $ if $ n $ is even. Let $ f(1) = 1 $. Assume we start with some number $ n $ and repeatedly take the $ f $ of the current number. Prove that no matter what the initial number is we eventually reach $ 1 $.

Keywords: integer sequence

Burnside problem ★★★★

Author(s): Burnside

Conjecture   If a group has $ r $ generators and exponent $ n $, is it necessarily finite?

Keywords:

Covering powers of cycles with equivalence subgraphs

Author(s):

Conjecture   Given $ k $ and $ n $, the graph $ C_{n}^k $ has equivalence covering number $ \Omega(k) $.

Keywords:

inverse of an integer matrix ★★

Author(s): Gregory

Question   I've been working on this for a long time and I'm getting nowhere. Could you help me or at least tell me where to look for help. Suppose D is an m-by-m diagonal matrix with integer elements all $ \ge 2 $. Suppose X is an m-by-n integer matrix $ (m \le n) $. Consider the partitioned matrix M = [D X]. Obviously M has full row rank so it has a right inverse of rational numbers. The question is, under what conditions does it have an integer right inverse? My guess, which I can't prove, is that the integers in each row need to be relatively prime.

Keywords: invertable matrices, integer matrices

Every metamonovalued funcoid is monovalued ★★

Author(s): Porton

Conjecture   Every metamonovalued funcoid is monovalued.

The reverse is almost trivial: Every monovalued funcoid is metamonovalued.

Keywords: monovalued

Cycles in Graphs of Large Chromatic Number ★★

Author(s): Brewster; McGuinness; Moore; Noel

Conjecture   If $ \chi(G)>k $, then $ G $ contains at least $ \frac{(k+1)(k-1)!}{2} $ cycles of length $ 0\bmod k $.

Keywords: chromatic number; cycles

Barnette's Conjecture ★★★

Author(s): Barnette

Conjecture   Every 3-connected cubic planar bipartite graph is Hamiltonian.

Keywords: bipartite; cubic; hamiltonian

Closing Lemma for Diffeomorphism (Dynamical Systems) ★★★★

Author(s): Charles Pugh

Conjecture   Let $ f\in Diff^{r}(M) $ and $ p\in\omega_{f}  $. Then for any neighborhood $ V_{f}\subset Diff^{r}(M)  $ there is $ g\in V_{f} $ such that $ p $ is periodic point of $ g $

There is an analogous conjecture for flows ( $ C^{r} $ vector fields . In the case of diffeos this was proved by Charles Pugh for $ r = 1 $. In the case of Flows this has been solved by Sushei Hayahshy for $ r = 1 $ . But in the two cases the problem is wide open for $ r > 1 $

Keywords: Dynamics , Pertubation

trace inequality ★★

Author(s):

Let $ A,B $ be positive semidefinite, by Jensen's inequality, it is easy to see $ [tr(A^s+B^s)]^{\frac{1}{s}}\leq [tr(A^r+B^r)]^{\frac{1}{r}} $, whenever $ s>r>0 $.

What about the $ tr(A^s+B^s)^{\frac{1}{s}}\leq tr(A^r+B^r)^{\frac{1}{r}} $, is it still valid?

Keywords: