If , are graphs, a function is called cycle-continuous if the pre-image of every element of the (binary) cycle space of is a member of the cycle space of .
Problem Does there exist an infinite set of graphs so that there is no cycle continuous mapping between and whenever ?
Conjecture For every set of points in the plane, not all collinear, there is a point in contained in at least lines determined by , for some constant .
Let be a hypergraph. A strongly maximal matching is a matching so that for every matching . A strongly minimal cover is a (vertex) cover so that for every cover .
Conjecture If is a (possibly infinite) hypergraph in which all edges have size for some integer , then has a strongly maximal matching and a strongly minimal cover.
Conjecture For every , the sequence in consisting of copes of and copies of has the fewest number of distinct subsequence sums over all zero-free sequences from of length .
We say that a set is -universal if every vertex planar graph can be drawn in the plane so that each vertex maps to a distinct point in , and all edges are (non-intersecting) straight line segments.
Question Does there exist an -universal set of size ?
Let be a positive integer. We say that a graph is strongly -colorable if for every partition of the vertices to sets of size at most there is a proper -coloring of in which the vertices in each set of the partition have distinct colors.
Conjecture If is the maximal degree of a graph , then is strongly -colorable.